Alternierende Multilinearform/Dachprodukt/Konstruktion und Definition/Textabschnitt

Aus Wikiversity
Zur Navigation springen Zur Suche springen


Konstruktion  

Es sei ein Körper, ein -Vektorraum und . Wir konstruieren das sogenannte -te Dachprodukt von mit sich selbst, geschrieben . Dazu betrachten wir die Menge aller Symbole der Form

und die zugehörige Menge der . Wir betrachten den Vektorraum

das ist die Menge aller (endlichen) Summen

die bilden eine Basis. Dies ist mit der natürlichen Addition und der natürlichen Skalarmultiplikation ein Vektorraum, und zwar ein Untervektorraum des Abbildungsraumes (es handelt sich bei um die Menge derjenigen Vektoren, die für fast alle Elemente den Wert haben). In betrachten wir den Untervektorraum , der von den folgenden Elementen erzeugt wird (die man die Standardrelationen des Dachprodukts nennt).

für beliebige .

für beliebige und .

für und beliebige .

Dabei ist der Leitgedanke, die Regeln, die für eine alternierende multilineare Abbildung gelten müssen, dadurch zu erzwingen, dass man die obigen Relationen zu macht. Der erste Typ repräsentiert die Additivität in jedem Argument, die zweite die Verträglichkeit mit der skalaren Multiplikation, die dritte die alternierende Eigenschaft.

Man setzt nun

d.h. man bildet den Restklassenraum von modulo dem Unterraum .

Die Elemente bilden dabei ein Erzeugendensystem von . Die Restklasse von modulo bezeichnen wir mit

Die Standardrelationen werden dann zu den Rechenregeln

und


Definition  

Es sei ein Körper und ein -Vektorraum. Man nennt den (in Fakt konstruierten) -Vektorraum die -te äußere Potenz (oder das -te Dachprodukt) von . Die Abbildung

nennt man die universelle alternierende Abbildung.