Dedekindbereich/Erweiterung/Klassengruppe/Rückzug/Textabschnitt

Aus Wikiversity


Lemma  

Zu einer Erweiterung von Dedekindbereichen

gehört in funktorieller Weise ein Gruppenhomomorphismus

Beweis  

Wir gehen von der Zuordnung aus, die jedem von verschiedenen Ideal von das Erweiterungsideal zuordnet, das ebenfalls von verschieden ist. Diese Zuordnung ist mit dem Produkt von Idealen verträglich. Deshalb liegt ein Monoidhomomorphismus vor. Ein gebrochenes Ideal kann man nach Aufgabe in der Form mit Idealen schreiben und diesem das gebrochene Ideal zuordnen. Dies ist wohldefiniert und so erhält man einen Gruppenhomomorphismus von der Gruppe der gebrochenen Ideale von in die Gruppe der gebrochenen Ideale von . Das Erweiterungsideal eines Hauptideals ist wieder ein Hauptideal, und deshalb werden gebrochene Hauptideale auf gebrochene Hauptideale abgebildet. Der Satz vom induzierten Homomorphismus ergibt somit einen Gruppenhomomorphismus

Insgesamt liegt das kommutative Diagramm

vor. Auf der Divisorebene wird dabei einem Primdivisor der Divisor zum Ideal zugeordnet. Das Erweiterungsideal zu beschreibt dabei die Faser der Spektrumsabbildung über . Dies ist insbesondere bei endlichen Erweiterungen von Dedekindbereichen relevant. Man kann sich fragen, ob die Abbildung zwischen den Klassengruppen stets injektiv ist, oder ob umgekehrt ein nichttriviales Ideal zu einem Hauptideal werden kann. Dies ist in der Tat der Fall.


Beispiel  

Wir betrachten im quadratischen Zahlbereich zu das Ideal , das nach Beispiel kein Hauptideal ist. Es sei der ganze Abschluss von (oder von ) im Erweiterungskörper vom Grad vier über . Wir haben also eine Kette

von Zahlbereichen. Wir behaupten, dass das Erweiterungsideal

ein Hauptideal in ist, und zwar behaupten wir, dass ein Idealerzeuger davon ist. Dazu betrachten wir zunächst das rationale Element . Wegen

erfüllt eine Ganzheitsgleichung über und gehört somit zu (ebenso, wenn im Zähler ein Minuszeichen steht). Die Gleichheit

folgt einerseits aus

und

und andererseits aus


Es gilt sogar, dass man im zahlentheoretischen Kontext jede Klasse trivialisieren kann. Dies bedeutet aber nicht, dass es zu jedem Zahlbereich eine faktorielle Erweiterung gibt, da durch die Trivialisierung typischerweise „an anderer Stelle“ nichttriviale Klassen auftreten.