Differenzierbare Mannigfaltigkeit/R/Differenzierbare Abbildung/Einführung/Textabschnitt

Aus Wikiversity
Zur Navigation springen Zur Suche springen


Definition  

Es seien und zwei -Mannigfaltigkeiten mit Atlanten und . Es sei . Eine stetige Abbildung

heißt eine -differenzierbare Abbildung, wenn für alle und alle die Abbildungen

-differenzierbar sind.

Da die offen sind, ist durch diese Definition der Differenzierbarkeitsbegriff für Abbildungen zwischen Mannigfaltigkeiten auf den Differenzierbarkeitsbegriff von Abbildungen zwischen offenen Mengen in reellen Vektorräumen zurückgeführt. Da man eine -Mannigfaltigkeit als eine -Mannigfaltigkeit für auffassen kann, genügt es im Wesentlichen, von -Abbildungen zwischen -Mannigfaltigkeiten zu sprechen. Wichtig sind insbesondere die Fälle . Man beachte, dass wir bei von einer differenzierbaren Abbildung sprechen, ohne dass es (bisher) eine „Ableitung“ gibt.



Proposition  

Es seien und -Mannigfaltigkeiten. Dann gelten folgende Aussagen.

  1. Die Identität

    ist eine -Abbildung.

  2. Jede konstante Abbildung

    ist eine -Abbildung.

  3. Für jede offene Teilmenge ist die offene Einbettung eine -Abbildung.
  4. Es seien
    und

    -Abbildungen. Dann ist auch die Hintereinanderschaltung

    eine -Abbildung.

Beweis  

(1). Die zu überprüfenden Abbildungen sind genau die Kartenwechsel , die nach Definition einer -differenzierbaren Mannigfaltigkeit -Diffeomorphismen sind.
(2). Die zu überprüfenden Abbildungen sind bezüglich jeder Karte konstant, also beliebig oft differenzierbar.
(3). Die zu überprüfenden Abbildungen sind zu gleich

also eine offene Einbettung gefolgt von einem differenzierbaren Kartenwechsel.
(4). Es seien

die Karten für . Dann sind für alle möglichen Indexkombinationen die (auf gewissen offenen Teilmengen eingeschränkten) Hintereinanderschaltungen

nach der Kettenregel differenzierbar. Bei verwendet man Aufgabe.



Definition  

Es seien und zwei -Mannigfaltigkeiten. Ein Homöomorphismus

heißt ein -Diffeomorphismus, wenn sowohl als auch -Abbildungen sind.


Definition  

Zwei -Mannigfaltigkeiten und heißen -diffeomorph, wenn es zwischen ihnen einen - Diffeomorphismus gibt.