Differenzierbare Mannigfaltikeit/Funktorielle Eigenschaften des Tangentialraums/Textabschnitt

Aus Wikiversity


Lemma

Es seien und differenzierbare Mannigfaltigkeiten und es sei

eine differenzierbare Abbildung. Es sei und und es seien

zwei differenzierbare Kurven mit einem offenen Intervall und . Es seien und im Punkt tangential äquivalent.

Dann sind auch die Verknüpfungen und tangential äquivalent in .

Beweis

Siehe Aufgabe.


Aufgrund dieses Lemmas ist der folgende Begriff wohldefiniert.


Definition  

Es seien und differenzierbare Mannigfaltigkeiten und es sei

eine differenzierbare Abbildung. Es sei und . Dann nennt man die Abbildung

die zugehörige Tangentialabbildung im Punkt . Sie wird mit bezeichnet.



Lemma  

Es seien und differenzierbare Mannigfaltigkeiten und es sei

eine differenzierbare Abbildung. Es sei , und es sei

die zugehörige Tangentialabbildung. Dann gelten folgende Aussagen.

  1. Wenn und offene Teilmengen sind und die Tangentialräume mit den umgebenden euklidischen Räumen identifiziert werden, so ist die Tangentialabbildung gleich dem totalen Differential .
  2. Wenn

    mit und und

    mit und Karten sind, so ist das Diagramm

    kommutativ, wobei die vertikalen Abbildungen durch die Isomorphismen bzw. gegeben sind.

  3. ist -linear.
  4. Wenn eine weitere Mannigfaltigkeit, und

    eine weitere differenzierbare Abbildung mit ist, so gilt

  5. Wenn ein Diffeomorphismus ist, dann ist ein Isomorphismus.
  6. Für eine differenzierbare Kurve

    mit einem offenen Intervall , und gilt im Tangentialraum die Gleichheit

Beweis  

(1). Jeder Tangentialvektor wird repräsentiert durch einen affin-linearen Weg mit einem Vektor , so dass wir zwischen diesen Vektoren und den durch sie definierten Tangentialvektoren hin- und herwechseln können. Für den zusammengesetzten Weg gilt nach der Kettenregel


(2). Die Kettenregel angewendet auf (wobei man und durch kleinere offene Mengen ersetzen muss)

liefert

was gerade die Kommutativität des Diagramms ist.
(3). Die Aussage folgt aus (2) und der Linearität des totalen Differentials.
(4). Durch Übergang zu Karten folgt dies aus (2) und der Kettenregel.
(5) folgt aus (4) angewendet auf die Umkehrabbildung .
(6). Das Element ist als Tangentenvektor an einem Punkt als der Weg zu interpretieren. Bei ist dies der identische Weg. Daher ist




Definition  

Es seien und differenzierbare Mannigfaltigkeiten und

eine differenzierbare Abbildung. Es sei und . Dann nennt man die zur Tangentialabbildung

duale Abbildung

die Kotangentialabbildung im Punkt . Sie wird mit bezeichnet.

Ausgeschrieben handelt es sich dabei um die Abbildung