Ebene algebraische Kurven/Schnittmultiplizität/Lokale Beschreibung/Einführung/Textabschnitt

Aus Wikiversity

Es seien zwei ebene algebraische Kurven gegeben, die keine Komponente gemeinsam haben. Dann besteht der Durchschnitt nach Fakt nur aus endlich vielen Punkten. Wir wollen das Schnittverhalten der beiden Kurven in einem Punkt quantitativ erfassen. Dabei empfiehlt es sich, eine etwas allgemeinere Situation zu betrachten, und zwar schreiben wir und und berücksichtigen, dass in und in Primfaktoren (jeweils) mehrfach vorkommen können. D.h. wir unterscheiden von nun an zwischen den Kurven und , obwohl es sich geometrisch um das gleiche Objekt handelt.



Lemma  

Es sei ein Körper und seien Polynome ohne gemeinsamen Primteiler. Es sei und die zugehörige Lokalisierung.

Dann besitzt der Restklassenring eine endliche -Dimension.

Beweis  

Es sei das maximale Ideal in . Da und keinen gemeinsamen Teiler haben, gibt es in zwischen und kein weiteres Primideal. Daher ist in jede Nichteinheit nilpotent. Daher gilt in die Beziehung für ein . Es liegt daher eine Surjektion

vor. Nach Fakt besitzt der Restklassenring links eine endliche -Dimension, so dass dies auch für den Restklassenring rechts gilt.


Aufgrund von diesem Lemma ist die folgende Definition sinnvoll.


Definition  

Es sei ein Körper und seien zwei nichtkonstante Polynome ohne gemeinsame Komponente und sei

Dann nennt man die Dimension

die Schnittmultiplizität der beiden Kurven und im Punkt . Sie wird mit

bezeichnet.


Beispiel  

Sei und eine Gerade in der affinen Ebene gegeben, die keine Komponente von sei. Es sei ein Punkt des Durchschnitts. Den Restklassenring

berechnet man, indem man mittels des linearen Terms nach einer der Variablen oder auflöst. Damit kann man eine Variable eliminieren und der Restklassenring ist isomorph zu , wobei man erhält, indem man in die Variable durch ersetzt. Dies kann man auch so sehen, dass man zuerst berechnet und dann an dem Punkt lokalisiert. Das Polynom hat in eine Faktorisierung in Linearfaktoren (der Körper sei algebraisch abgeschlossen)

Da der Punkt eine Nullstelle ist, muss für ein sein. Bei der Lokalisierung werden die anderen Linearfaktoren zu Einheiten gemacht und „übrig“ bleibt

Dieser Ring hat die Dimension .




Lemma  

Es sei ein algebraisch abgeschlossener Körper, sei , , ein Polynom in homogener Zerlegung und eine Gerade durch den Nullpunkt , die keine Komponente von sei.

Dann ist

d.h. die Schnittmultiplizität einer Kurve mit einer Geraden ist mindestens so groß wie die Multiplizität der Kurve im Schnittpunkt.

Wenn keine Tangente der Kurve ist, so gilt hierbei Gleichheit.

Beweis  

Wir setzen und , und wir nehmen an, so dass wir schreiben können. Es sei zunächst die Gerade keine Tangente von in , also keine Komponente von . Es ist dann

Hierbei ist und es wird mit einer Einheit rausdividiert, so dass der Restklassenring die -Dimension besitzt. Im allgemeinen Fall gibt es ein minimales , , mit (sonst wäre eine Komponente von ). Dann ist mit dem gleichen Argument die Dimension des Restklassenringes gleich .



Lemma

Es sei ein algebraisch abgeschlossener Körper und seien Polynome ohne gemeinsame Komponente und sei ein Punkt. Dann gelten folgende Aussagen.

  1. Es ist genau dann, wenn ist.
  2. Es ist .
  3. Die Schnittmultiplizität ändert sich nicht bei einer affinen Variablentransformation.
  4. Wenn mit ist, so ist .
  5. Es ist für jedes .

Beweis

Das ist trivial.


Teil (4) der letzten Aussage kann man auch so formulieren, dass die Schnittmultiplizität nur von den Komponenten von und abhängen, die durch gehen.

Ein transversaler und ein nichttransversaler Schnitt.



Definition  

Es seien und . Dann sagt man, dass sich und im Punkt transversal schneiden, wenn sowohl auf als auch auf ein glatter Punkt ist und wenn die Tangenten der beiden Kurven im Punkt verschieden sind.



Lemma  

Es sei ein Körper und seien Polynome ohne gemeinsame Komponente. Es sei

ein Schnittpunkt.

Dann schneiden sich und in genau dann transversal, wenn die Schnittmultiplizität ist.

Beweis  

Es sei der lokale Ring zum (Null-)Punkt in der Ebene. Es sei zunächst der Schnitt als transversal vorausgesetzt. Dann sind insbesondere beide Kurven in glatt, und ist nach Fakt ein diskreter Bewertungsring. Da die Tangenten verschieden sind, können wir annehmen, dass die Tangente an durch und die Tangente an durch gegeben ist. Nach dem Beweis zu Fakt ist dann eine Ortsuniformisierende von . Da die Form mit hat, ist ebenfalls eine Ortsuniformisierende in und daher ist . Daher ist die Schnittmultiplizität eins.

Für die Rückrichtung folgt aus Fakt, dass die Multiplizität der beiden Kurven in eins sein muss und daher beide Kurven in glatt sind. Nehmen wir an, dass die Tangenten übereinstimmen. Dann können wir annehmen, dass sowohl als auch die Form Terme von größerem Grad besitzen. Man kann die Idealerzeuger durch ersetzen, und dabei ist . Dann erzeugt aber in nicht das maximale Ideal, und die Schnittmultiplizität kann nicht eins sein.



Satz  

Es seien Polynome ohne gemeinsamen Primteiler mit Faktorzerlegungen

Dann ist

Beweis  

Diese Aussage folgt durch Induktion aus dem Spezialfall (und ). Sei . Wegen hat man eine surjektive Abbildung . Andererseits induziert die Multiplikation mit einen -Modulhomomorphismus . Wir behaupten, dass eine kurze exakte Sequenz

vorliegt. Dabei ist die Surjektivität klar und ebenso, dass die hintereinander geschalteten Abbildungen die Nullabbildung sind. Es sei ein Element, das rechts auf abgebildet wird. Dann kann man in schreiben: . Dann repräsentiert ebenfalls diese Klasse in , und dieses kommt von links. Es sei nun ein Element, das durch Multiplikation mit auf abgebildet wird, also . Wir schreiben dies als

Da und keinen gemeinsamen Primteiler besitzen, gilt dies erst recht für und . Also muss ein Teiler von sein und es ergibt sich eine Beziehung , woraus folgt, dass bereits ist.

Aus der Additivitätseigenschaft von kurzen exakten Sequenzen folgt die gewünschte Identität