Endliche Mengen/Surjektive Abbildungen/Produktpotenzen/Summe/Fakt/Beweis

Aus Wikiversity
Beweis

Wir führen Induktion über und bei fixiertem Induktion nach . Bei ist die Aussage richtig. Es sei also fixiert und sei die Aussage für alle kleineren und alle bereits bewiesen. Für ist der Summenausdruck gleich , und es gibt auch keine surjektive Abbildung einer -elementigen Menge in eine größere Menge. Bei ist das einzige Indextupel gleich und der Summenausdruck ist gleich , was mit der Anzahl der surjektiven bzw. bijektiven Abbildungen nach Fakt übereinstimmt. Es sei also die Aussage für bewiesen und betrachten wir eine surjektive Abbildung von nach . Dabei ist entweder schon die Einschränkung auf surjektiv oder nicht. Im ersten Fall gibt es bei gegebenem genau Möglichkeiten für , da ja auf eines der Elemente abgebildet werden kann. Im zweiten Fall, wenn nicht surjektiv ist, so wird durch genau ein Element der Bildmenge nicht getroffen, und muss auf dieses nicht getroffene Element abbilden, um die Surjektivität sicherzustellen. Es gibt hierbei Möglichkeiten, welches Element von nicht getroffen wird. Ferner ist eine surjektive Abbildung auf eine -elementige Teilmenge. Somit ist unter Verwendung der Induktionsvoraussetzung die Anzahl der surjektiven Abbildungen von nach gleich