Endlicher Raum/3 Punkte/Einer generisch/Generisch Z/Kohomologie/Beispiel

Aus Wikiversity

Wir betrachten den topologischen Raum mit den offenen Mengen . Dieser Raum besitzt die beiden abgeschlossenen Punkte und , er ist irreduzibel und ist der generische Punkt. Abgesehen von der leeren Menge bilden die offenen Mengen das Inklusionsdiagramm

Eine Garbe von kommutativen Gruppen auf ist gegeben, wenn man diesen Teilmengen Gruppen und Restriktionshomomorphismen zuweist (und die Verträglichkeitsbedingung überprüft). Wir betrachten die Garbe , die durch

gegeben ist. Diese kann man in die konstante Garbe (mit Identitäten)

einbetten. Die Quotientengarbe ist durch

gegeben. Die Werte für ergeben sich direkt durch Restklassenbildung, die Vergarbung hat keinen Effekt, und für ergibt sich das Produkt , da die Schnitte über und automatisch verträglich sind. Somit ist die globale Abbildung

nicht surjektiv, die lange exakte Kohomologiesequenz ist vielmehr

Hierbei geht vorne und hinten (das folgt aus der Exaktheit).