Fasern/(x,y) nach x^2+y^2/Differenzierbare Parametrisierungen/Aufgabe/Kommentar

Aus Wikiversity

Den Graphen dieser Funktion kann man sich als runde Schale vorstellen, die auf der --Ebene steht und nur im Punkt berührt (sie wird aber immer breiter und ist unendlich hoch). Eine Faser der Funktion ist dann die Schnittmenge dieser Schale mit einer horizontalen Ebene (parallel zur --Ebene) in einer festen Höhe. Für positive Höhen ist ein Schnitt durch die Schale ein Kreis. In der Höhe Null also die --Ebene selbst, trifft nur den einen Punkt der Schale, der, der diese berührt. In negativen Höhen wird die Schale gar nicht getroffen, die Fasern sind dann leer. Mathematisch ausgedrückt ist für festes (oben als Höhe bezeichnet) die Faser über (oben als Schnittmenge in der Höhe bezeichnet) gegeben durch die Menge

Für sieht man durch Wurzelziehen, dass die Kreisgleichung ist. Demnach sind die Fasern dann Kreise um den Ursprung mit Radius . Da aufgrund der Quadrate nie negativ wird, sind die Fasern für negative leer. Die Frage nach den Diffeomorphismen braucht hierfür also nicht beantwortet werden. Für müssen und null sein. Die Faser besteht demnach nur aus dem Punkt . Damit eine Abbildung von einem Intervall nach bijektiv (das ist ein Diffeomorphismus) sein kann, darf nur ein Punkt sein. Dann ist aber nicht mehr offen und die Definition eines Diffeomorphismus nicht mehr möglich. Das passt übrigens gut in den Zusammenhang mit Fakt über Implizite Abbildungen. Unsere Abbildung ist differenzierbar. Das totale Differential von ist gegeben durch und damit regulär genau dann wenn . Damit ist er auch im nicht anwendbar und oben haben wir direkt gesehen, dass auch kein Diffeomorphismus existieren kann. (Achtung! Nur weil der Satz nicht anwendbar ist, heißt es nicht, dass es so einen Diffeomorphismus nicht geben kann. Er ist nämlich von der Bauart, wenn gewisse Voraussetzungen erfüllt sind, dann existiert ein Diffeomorphismus.) Das totale Differential von ist aber regulär in jedem Punkt und von daher ist der Satz anwendbar für jede Faser über . Für festes und jedem Punkt P aus der Faser existieren offene Mengen , , und und ein Diffeomorphismus . Dieser kann jetzt durch lokales Auflösen gefunden werden. Wenn beispielsweise , dann ist . Die Faser über bzw. die Faser, die dann durch geht ist der Kreis mit Radius , bzw. die Menge

Lokal um kann ich diese dann nach auflösen zu . Diese Funktion ist diffeomorph in einem offenen Intervall um , genauer . Was wir hier gemacht haben, ist den oberen Halbkreis durch den Graph von dargestellt. So viel dazu Diffeomorphismen zu finden. Jetzt sollen wir aber Diffeomorphismen finden, die möglichst große offene Teilmengen der Fasern abdecken abdecken. Oben haben wir nur den Halbkreis abgedeckt. Beispiel

zeigt aber, dass der gesamte Kreis (die gesamte Faser), bis auf einen Punkt getroffen werden kann. Dort werden trigonometrische Funktionen für den Diffeomorphismus verwendet. Es muss beachtet werden, dass wir den dortigen Diffeomorphismus hier für festen Radius verwenden können.
Zur kommentierten Aufgabe