Gewöhnliche Differentialgleichungen/Getrennte Variablen/Textabschnitt

Aus Wikiversity


Definition  

Eine Differentialgleichung der Form

mit zwei Funktionen (dabei sind und reelle Intervalle)

und

heißt gewöhnliche Differentialgleichung mit getrennten Variablen.

Eine Differentialgleichung mit getrennten Variablen ist auf der Produktmenge definiert. Eine homogene lineare Differentialgleichung besitzt offenbar getrennte Variablen (mit ), dagegen besitzt eine inhomogene lineare Differentialgleichung im Allgemeinen keine getrennten Variablen. Die Differentialgleichungen mit getrennten Variablen lassen sich durch Integrieren lösen. Wenn ist, so bestätigt man direkt die konstante Lösung . Daher beschränken wir uns im Folgenden auf die Situation, dass keine Nullstelle besitzt. Die Grundidee ist dann, in der Gleichung

die beiden Seiten zu integrieren, wobei man links die Substitutionsregel anwendet.



Satz  

Es sei

eine Differentialgleichung mit getrennten Variablen mit stetigen Funktionen

und

wobei keine Nullstelle besitze. Es sei eine Stammfunktion von und eine Stammfunktion von . Weiter sei ein Teilintervall mit .

Dann ist eine bijektive Funktion auf sein Bild und die Lösungen dieser Differentialgleichung haben die Form

Wenn zusätzlich die Anfangsbedingung

gegeben ist, und wenn die Stammfunktionen die zusätzlichen Eigenschaften und erfüllen, so ist

die eindeutige Lösung des Anfangswertproblems.

Beweis  

Da stetig ist und keine Nullstelle besitzt, ist bzw. nach dem Zwischenwertsatz entweder stets positiv oder stets negativ, so dass nach Fakt streng monoton und daher nach Aufgabe injektiv (also bijektiv auf sein Bild) ist.
Sei wie angegeben. Dann ist nach Fakt und Fakt

so dass in der Tat eine Lösung vorliegt.
Es sei nun eine differenzierbare Funktion, die die Differentialgleichung erfüllt. Daraus folgt

wobei wir die Substitution angewendet haben. Für die zugehörigen Stammfunktionen (mit den unteren Integralgrenzen bzw. ) bedeutet dies , also ist .
Um die Anfangsbedingung zu erfüllen, kann man bzw. als untere Integralgrenzen wählen. Wir zeigen, dass dies die einzige Lösung ist. Es seien also und zwei Stammfunktionen zu und und zwei Stammfunktionen zu derart, dass sowohl als auch die Anfangsbedingung erfüllen. D.h. die beiden Funktionen stimmen zum Zeitpunkt überein. Da sich Stammfunktionen nur um eine Konstante unterscheiden, können wir und mit zwei Konstanten ansetzen. Es gilt also einerseits und andererseits , so dass gilt, woraus wegen sofort folgt. Also ist und somit wegen der Injektivität von auch für alle .


Wegen

(wende an) genügt es, bei der Stammfunktion zu eine Konstante zuzulassen, um die allgemeine Lösung zu erhalten. Durch einen Übergang von nach mit einer geeigneten Konstanten kann man auch erreichen, dass es ein (echtes) Intervall gibt mit

Sowohl orts- als auch zeitunabhängige Differentialgleichungen kann man als Differentialgleichung mit getrennten Variablen auffassen. Für zeitunabhängige Differentialgleichungen erhält man den folgenden Lösungsansatz.



Korollar  

Es sei

eine zeitunabhängige Differentialgleichung mit einer

stetigen Funktion

ohne Nullstelle. Es sei eine Stammfunktion von mit der Umkehrfunktion

Dann sind die Funktionen

die Lösungen dieser Differentialgleichung auf dem Intervall .

Beweis  

Dies folgt direkt aus Fakt.

Wenn im zeitunabhängigen Fall die Funktion Nullstellen besitzt, so muss man zuerst diese und die zugehörigen konstanten Lösungen bestimmen und dann den vorstehenden Satz auf die nullstellenfreien Teilintervalle des Definitionsbereiches anwenden.


Beispiel  

Wir betrachten die zeitunabhängige Differentialgleichung

für . Es ist also und damit müssen wir nach Fakt integrieren, eine Stammfunktion dazu ist

Die Umkehrfunktion berechnet sich aus dem Ansatz zu . Also haben die Lösungskurven die Gestalt

mit .



Beispiel  

Wir betrachten die zeitunabhängige Differentialgleichung

für . Nach Fakt müssen wir also integrieren, eine Stammfunktion dazu ist nach Beispiel die Funktion

Die Umkehrfunktion berechnet sich über zu

Also haben die Lösungskurven die Gestalt

mit einem .


Nach diesen zeitunabhängigen Differentialgleichungen besprechen wir weitere Beispiele für Differentialgleichungen mit getrennten Variablen.


Korollar

Eine Differentialgleichung der Form

mit

und einer stetigen Funktion

besitzt auf die Lösungen

wobei eine Stammfunktion zu mit sei.

Beweis

Siehe Aufgabe.



Beispiel  

Wir betrachten die Differentialgleichung mit getrennten Variablen

für

. Eine Stammfunktion zu ist ( ist also negativ) mit der Umkehrfunktion

Die Stammfunktionen zu sind . Daher sind die Lösungen der Differentialgleichung von der Form

Hierbei muss negativ gewählt werden, damit diese Lösung einen nichtleeren Definitionsbereich besitzt. Der Definitionsbereich ist dann das Intervall . Insbesondere sind die Lösungen nur auf einem beschränkten offenen Intervall definiert, obwohl die Differentialgleichung auf ganz definiert ist. An den Intervallgrenzen strebt gegen , d. h., die Lösung „entweicht“.



Beispiel  

Wir betrachten die Differentialgleichung mit getrennten Variablen

für . Eine Stammfunktion zu ist ( ist also negativ) mit der Umkehrfunktion

Die Stammfunktionen zu sind . Daher sind die Lösungen der Differentialgleichung von der Form

Insbesondere erhält man bei die auf definierte Lösung