Gitter/Komplexe Zahlen/Quotient/Einführung/Textabschnitt

Aus Wikiversity


Satz  

Zu einem Gitter

ist die kanonische Abbildung eine Überlagerung und der Quotientenraum ist in natürlicher Weise eine eindimensionale kompakte komplexe Mannigfaltigkeit Dabei wird zu einer holomorphen Abbildung.

Beweis  

Zu jedem Punkt und einem Urbildpunkt gibt es eine offene Ballumgebung , auf der die Einschränkung einen Homöomorphismus

mit einer offenen Umgebung von induziert. Man wähle einfach kleiner als die Hälfte des minimalen Abstandes im Gitter. Dabei sind die zu verschiedenen Urbildpunkten von zueinander disjunkt und untereinander durch eine Verschiebung mit einem Gittervektor homöomorph. Damit ist die Abbildung eine Überlagerung mit der Faser . Man erhält auf eine komplexe Karte, indem man einen Homöomorphismus zu einem auswählt. Zu zwei solchen offenen Mengen und (zu Punkten ) seien offene Bälle derart, dass die Einschränkungen und Homöomorphismen sind. Es sei und sei das Urbild von unter und das Urbild von unter . Da das Urbild von unter die disjunkte Vereinigung von zu homöomorphen Teilmengen ist, die durch eine Translation mit einem Element aus ineinander übergehen, ist

mit einem . Die Abbildung

beschreibt dann den Kartenwechsel, was zeigt, dass durch diese Karten eine wohldefinierte komplexe Struktur vorliegt.

Die Kompaktheit folgt aus Fakt oder daraus, dass eine Gittermasche ganz in einer beschränkten und abgeschlossenen, also kompakten Teilmenge von liegt und dass Bilder kompakter Mengen unter stetigen Abbildungen kompakt sind.

Die Holomorphie der Abbildung bezüglich der soeben etablierten komplexen Struktur auf dem Quotienten ist klar.



Definition  

Eine komplexe Mannigfaltigkeit , die zugleich eine Gruppe ist, für die die Gruppenverknüpfung

und die Inversenbildung

holomorph sind, heißt komplexe Lie-Gruppe.



Satz  

Zu einem Gitter

ist der Quotientenraum in natürlicher Weise eine eindimensionale kompakte kommutative komplexe Lie-Gruppe.

Beweis  

Da eine Untergruppe ist, ist die Restklassengruppe eine kommutative Gruppe. Nach Fakt ist auch eine kompakte komplexe Mannigfaltigkeit. Es ist also noch zu zeigen, dass die Gruppenaddition auf und das Negative holomorphe Abbildungen sind. Dies ergibt sich aber im Wesentlichen aus den kommutativen Diagrammen

und



Definition  

Unter einem komplexen Torus versteht man den Quotientenraum zu einem Gitter .

Statt von einem (eindimensionalen) komplexen Torus spricht man auch von einer komplex-elliptischen Kurve, dies vor allem aber dann, wenn man den Torus als glatte kubische Kurve in der projektiven Ebene realisiert hat, siehe Fakt.

Bemerkung  

Ein komplexer Torus (eine elliptische Kurve über ) ist durch eine Vielzahl an Strukturen ausgezeichnet, die sich teilweise gegenseitig bedingen. Nach Fakt handelt es sich um eine eindimensionale komplexe Mannigfaltigkeit, also eine riemannsche Fläche. Damit ist sie insbesondere eine zweidimensionale reelle Mannigfaltigkeit. Ihre topologische Gestalt ist schon in Fakt beschrieben worden, es handelt sich um einen Torus, ein Produkt der -Sphäre mit sich selbst, also . Insbesondere ist ein komplexer Torus kompakt. Ferner ist ein komplexer Torus nach Fakt eine komplexe Lie-Gruppe, es gibt eine Addition auf ihr, die sie zu einer kommutativen Gruppe macht, bei der die Addition und die Negation holomorph sind. Die Abbildung

ist holomorph und ein Gruppenhomomorphismus, genauer ein Homomomorphismus von komplexen eindimensionalen Lie-Gruppen. Als topologische Gruppe bzw. als reelle Lie-Gruppe handelt es sich einfach um das Produkt der Kreisgruppe mit sich selbst. Die reelle Mannigfaltigkeitsstruktur und die Struktur als reelle Lie-Gruppe ist also für jeden komplexen Torus gleich. Dagegen hängen die Eigenschaften eines komplexen Torus als komplexe Mannigfaltigkeit bzw. als komplexe Lie-Gruppe wesentlich vom Gitter ab. Es gibt eine Vielzahl von unterschiedlichen komplexen Tori. Man kann auch so sagen, dass es auf der einen reellen Mannigfaltigkeit eine Vielzahl an komplexen Strukturen gibt.