Zum Inhalt springen

Invertierbare Garbe/Übergangsabbildung/Motivation für Cech-Kohomologie/2/Beispiel

Aus Wikiversity

Wir knüpfen an Bemerkung an, es sei also ein beringter Raum und wir interessieren uns für die invertierbaren Garben auf , und zwar für solche, die bezüglich einer fixierten offenen Überdeckung Trivialisierungen besitzen. Diese invertierbaren Garben entsprechen den Datensätzen

wobei allerdings ein solcher Datensatz als trivial anzusehen ist, wenn es Elemente mit für alle gibt. Diese Situation kann man insgesamt durch den Komplex

ausdrücken, wozu man auf eine totale Ordnung einführt und die vordere Abbildung durch

und die hintere Abbildung durch

gegeben ist. Ein Element in der Mitte gehört genau dann zum Kern der hinteren Abbildung, wenn es die Kozykelbedingung erfüllt, und es gehört genau dann zum Bild der vorderen Abbildung, wenn es die triviale invertierbare Garbe repräsentiert.