Kommutative Ringtheorie/Primideal/Einführung/Textabschnitt

Aus Wikiversity


Definition  

Ein Ideal in einem kommutativen Ring heißt Primideal, wenn ist und wenn für mit folgt: oder .



Lemma

Es sei ein Integritätsbereich und , . Dann ist genau dann ein Primelement, wenn das von erzeugte Hauptideal ein Primideal ist.

Beweis

Siehe Aufgabe.



Lemma  

Es sei ein kommutativer Ring und ein Ideal in .

Dann ist genau dann ein Primideal, wenn der Restklassenring ein Integritätsbereich ist.

Beweis  

Es sei zunächst ein Primideal. Dann ist insbesondere und somit ist der Restklassenring nicht der Nullring. Sei in wobei durch Elemente in repräsentiert seien. Dann ist und damit oder . was in gerade oder bedeutet.

Ist umgekehrt ein Integritätsbereich, so handelt es sich nicht um den Nullring und daher ist . Sei . Dann ist in und daher in , also ist .



Korollar  

Es sei ein kommutativer Ring und ein maximales Ideal in .

Dann ist ein Primideal.

Beweis  

Dies folgt sofort aus den Charakterisierungen für Primideale und für maximale Ideale mit den Restklassenringen.



Lemma  

Es sei ein kommutativer Ring und sei nicht nilpotent.

Dann gibt es ein Primideal in mit .

Beweis  

Wir betrachten die Menge der Ideale

Diese Menge ist nicht leer, da sie das Nullideal enthält. Ferner ist sie induktiv geordnet (bezüglich der Inklusion). Ist nämlich , , eine total geordnete Teilmenge von , so ist deren Vereinigung ebenfalls ein Ideal, das keine Potenz von enthält. Nach dem Lemma von Zorn gibt es daher maximale Elemente in .

Wir behaupten, dass ein solches maximales Element ein Primideal ist. Es sei dazu und , und sei angenommen. Dann hat man echte Inklusionen

Wegen der Maximalität können die beiden Ideale rechts nicht zu gehören, und das bedeutet, dass es Exponenten gibt mit

Dann ergibt sich der Widerspruch