Kommutativer Halbring/Binomi/Textabschnitt

Aus Wikiversity

Die folgende allgemeine binomische Formel oder binomischer Lehrsatz bringt die Addition, die Multiplikation und die Potenzierung in einem kommutativen Halbring und insbesondere für die natürlichen Zahlen miteinander in Beziehung.


Satz  

Es sei ein kommutativer Halbring und . Ferner sei eine natürliche Zahl.

Dann gilt

Beweis  

Wir führen Induktion nach . Für steht einerseits und andererseits . Es sei die Aussage bereits für bewiesen. Dann ist


Den vorstehenden Satz kann man sich auch folgendermaßen klar machen. Beim Ausmultiplizieren von

muss jeder Summand gemäß dem allgemeinen Distributivgesetz (in jedem Faktor) mit jedem Summanden multipliziert werden. Für jedes Teilprodukt muss man sich bei jedem Faktor entscheiden, ob man den vorderen Summanden oder den hinteren Summanden nimmt. Die einzelnen Produkte haben die Form , wobei die Anzahl der Faktoren ist, bei denen gewählt wurde und die Anzahl der Faktoren ist, bei denen gewählt wurde. Wenn man fixiert, so kann man sich fragen, auf wie viele Arten das Produkt zustande kommen kann. Eine solche Möglichkeit ist dadurch gegeben, dass man unter den Faktoren bestimmt, in welchen von ihnen gewählt wird. Die Anzahl der Möglichkeiten ist also die Anzahl der -elementigen Teilmengen von , also gleich .