Kurs:Analysis/Teil I/1/Klausur/latex

Aus Wikiversity

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{ . 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}

%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 4 }

\renewcommand{\avier}{ 1 }

\renewcommand{\afuenf}{ 3 }

\renewcommand{\asechs}{ 7 }

\renewcommand{\asieben}{ 8 }

\renewcommand{\aacht}{ 3 }

\renewcommand{\aneun}{ 4 }

\renewcommand{\azehn}{ 5 }

\renewcommand{\aelf}{ 4 }

\renewcommand{\azwoelf}{ 4 }

\renewcommand{\adreizehn}{ 2 }

\renewcommand{\avierzehn}{ 8 }

\renewcommand{\afuenfzehn}{ 5 }

\renewcommand{\asechzehn}{ 64 }

\renewcommand{\asiebzehn}{ }

\renewcommand{\aachtzehn}{ }

\renewcommand{\aneunzehn}{ }

\renewcommand{\azwanzig}{ }

\renewcommand{\aeinundzwanzig}{ }

\renewcommand{\azweiundzwanzig}{ }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabellefuenfzehn

\klausurnote

\newpage


\setcounter{section}{0}




\inputaufgabegibtloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Das \stichwort {Bild} {} einer Abbildung \maabbdisp {F} {L} {M } {.}

}{Eine \stichwort {Cauchy-Folge} {} ${ \left( x_n \right) }_{n \in \N }$ in einem angeordneten Körper $K$.

}{Die \stichwort {Gaußklammer} {}
\mathl{\lfloor x \rfloor}{} zu einem Element
\mathl{x\in K}{} in einem archimedisch angeordneten Körper
\mathl{K}{.}

}{Die \stichwort {Differenzierbarkeit in einem Punkt} {} $a \in {\mathbb K}$ einer Abbildung \maabb {f} {{\mathbb K} } {{\mathbb K} } {.}

}{Eine \stichwort {Stammfunktion} {} einer Abbildung
\mathl{f:D \rightarrow {\mathbb K}}{} auf einer offenen Menge
\mathl{D \subseteq {\mathbb K}}{.}

}{Die \stichwort {Lösung} {} zu einer gewöhnlichen Differentialgleichung
\mathdisp {y'= f(t,y)} { , }
wobei \maabbeledisp {f} {U} {\R } {(t,y)} {f(t,y) } {,} eine \definitionsverweis {Funktion}{}{} auf einer offenen Teilmenge
\mathl{U \subseteq \R^2}{} ist. }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Das \stichwort {Leibnizkriterium für alternierende Reihen} {.}}{Das \stichwort {Additionstheorem} {} für den Sinus.}{Der \stichwort {Hauptsatz der Infinitesimalrechnung} {} für eine stetige Funktion \maabbdisp {f} {I} {\R } {} auf einem reellen Intervall
\mathl{I \subseteq \R}{.}}

}
{} {}




\inputaufgabegibtloesung
{4}
{

Es seien
\mathl{x,y}{} reelle Zahlen. Zeige, dass
\mavergleichskettedisp
{\vergleichskette
{ x- \left \lfloor x \right \rfloor }
{ =} { y- \left \lfloor y \right \rfloor }
{ } { }
{ } { }
{ } { }
} {}{}{} genau dann gilt, wenn es ein
\mathl{n \in \Z}{} mit
\mathl{y=x+n}{} gibt.

}
{} {}




\inputaufgabegibtloesung
{1}
{

Für die Zahl
\mathl{1000 000 \pi}{} soll eine rationale Approximation gefunden werden, die vom wahren Wert um höchstens ${ \frac{ 1 }{ 1000 } }$-stel abweicht. Wie gut muss eine Approximation für $\pi$ sein, dass man daraus eine solche gewünschte Approximation erhalten kann?

}
{} {}




\inputaufgabegibtloesung
{3}
{

Entscheide, ob die \definitionsverweis {reelle Folge}{}{}
\mavergleichskettedisp
{\vergleichskette
{ x_n }
{ =} { { \frac{ 5n^{ \frac{ 3 }{ 2 } } +4 n^{ \frac{ 4 }{ 3 } } +n }{ 7n^{ \frac{ 5 }{ 3 } } +6 n^{ \frac{ 3 }{ 2 } } } } }
{ } { }
{ } { }
{ } { }
} {}{}{} \zusatzklammer {mit
\mavergleichskettek
{\vergleichskettek
{ n }
{ \geq }{ 1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{}} {} {} in $\R$ \definitionsverweis {konvergiert}{}{} und bestimme gegebenenfalls den \definitionsverweis {Grenzwert}{}{.}

}
{} {}




\inputaufgabegibtloesung
{7}
{

Beweise das Folgenkriterium für die Stetigkeit einer Funktion \maabb {f} {\R} {\R } {} in einem Punkt
\mavergleichskette
{\vergleichskette
{ x }
{ \in }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}
{} {}




\inputaufgabegibtloesung
{8}
{

Zeige, dass es stetige Funktionen \maabbdisp {f,g} {\R_{\geq 0}} {\R } {,} mit
\mavergleichskette
{\vergleichskette
{ fg }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} derart gibt, dass für alle
\mavergleichskette
{\vergleichskette
{ \delta }
{ > }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} weder
\mathl{f {{|}}_{[0, \delta]}}{} noch
\mathl{g {{|}}_{[0, \delta]}}{} die Nullfunktion ist.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Beweise den Satz über die Konvergenz der Exponentialreihe.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Wir betrachten das Polynom
\mathdisp {f(x)= x^4 -x^3+5x+2 \in {\mathbb C}[X]} { . }
Bestimme die $x$-Koordinaten sämtlicher Schnittpunkte der Tangente an $f$ im Punkt $x=1$ mit dem Graphen von $f$.

}
{} {}




\inputaufgabegibtloesung
{5}
{

Beweise den Satz über die Ableitung in einem lokalen Extremum.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Bestimme das \definitionsverweis {Taylor-Polynom}{}{} der Funktion
\mavergleichskette
{\vergleichskette
{f(x) }
{ = }{ { \frac{ 1 }{ x } } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} im Entwicklungspunkt
\mavergleichskette
{\vergleichskette
{a }
{ = }{2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} der Ordnung $4$.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Die beiden lokalen Extrema der Funktion
\mavergleichskettedisp
{\vergleichskette
{f(x) }
{ =} { x^3 -6x^2 +9x+1 }
{ } { }
{ } { }
{ } { }
} {}{}{} definieren ein achsenparalleles Rechteck, das vom Funktionsgraphen in zwei Bereiche zerlegt wird. Bestimme deren Flächeninhalte.

}
{} {}




\inputaufgabegibtloesung
{2}
{

Berechne das bestimmte Integral zur Funktion \maabbeledisp {f} {\R} {\R } {x} {f(x) = 2x^3 +3e^x - \sin x } {,} über
\mathl{[-1,0]}{.}

}
{} {}




\inputaufgabegibtloesung
{8 (4+1+3)}
{

a) Bestimme die \definitionsverweis {reelle Partialbruchzerlegung}{}{} von
\mathdisp {{ \frac{ 4s }{ s^4-2s^2+1 } }} { . }

b) Bestimme eine \definitionsverweis {Stammfunktion}{}{} von
\mathdisp {{ \frac{ 4s }{ s^4-2s^2+1 } }} { . }

c) Bestimme eine Stammfunktion von
\mathdisp {{ \frac{ 1 }{ \sinh^{ 2 } t } }} { . }

}
{} {}




\inputaufgabegibtloesung
{5 (3+2)}
{

a) Bestimme eine Lösung der \definitionsverweis {Differentialgleichung}{}{}
\mathdisp {y'= { \frac{ t^3 }{ y^2 } }, \, y > 0, \, t> 0} { , }
mit dem Lösungsansatz für getrennte Variablen.

b) Bestimme die Lösung des \definitionsverweis {Anfangswertproblems}{}{}
\mathdisp {y'= { \frac{ t^3 }{ y^2 } } \text{ mit } y(1)=1} { . }

}
{} {}