Kurs:Analysis/Teil I/2/Klausur/latex

Aus Wikiversity

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{ . 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}

%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 2 }

\renewcommand{\avier}{ 5 }

\renewcommand{\afuenf}{ 4 }

\renewcommand{\asechs}{ 4 }

\renewcommand{\asieben}{ 7 }

\renewcommand{\aacht}{ 2 }

\renewcommand{\aneun}{ 4 }

\renewcommand{\azehn}{ 5 }

\renewcommand{\aelf}{ 7 }

\renewcommand{\azwoelf}{ 2 }

\renewcommand{\adreizehn}{ 3 }

\renewcommand{\avierzehn}{ 4 }

\renewcommand{\afuenfzehn}{ 5 }

\renewcommand{\asechzehn}{ 4 }

\renewcommand{\asiebzehn}{ 64 }

\renewcommand{\aachtzehn}{ }

\renewcommand{\aneunzehn}{ }

\renewcommand{\azwanzig}{ }

\renewcommand{\aeinundzwanzig}{ }

\renewcommand{\azweiundzwanzig}{ }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabellesechzehn

\klausurnote

\newpage


\setcounter{section}{0}




\inputaufgabegibtloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Die \stichwort {Produktmenge} {} aus zwei Mengen $L$ und $M$.

}{Die \stichwort {Hintereinanderschaltung} {} der Abbildungen \maabbdisp {F} {L} {M } {} und \maabbdisp {G} {M} {N } {.}

}{Ein \stichwort {Häufungspunkt} {} einer reellen Folge
\mathl{{ \left( x_n \right) }_{n \in \N }}{.}

}{Die \stichwort {komplexe Exponentialfunktion} {.}

}{Die \stichwort {Riemann-Integrierbarkeit} {} einer Funktion \maabbdisp {f} {\R} {\R } {.}

}{Die \stichwort {gewöhnliche Differentialgleichung} {} zu einer Funktion \maabbdisp {f} {U} {\R } {} auf einer offenen Menge
\mathl{U \subseteq \R^2}{.} }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Die \stichwort {allgemeine binomische Formel} {} für
\mathl{(a+b)^n}{.}}{Der \stichwort {Identitätssatz für Potenzreihen} {.}}{Die \stichwort {Substitutionsregel} {} zur Integration von stetigen Funktionen.}

}
{} {}




\inputaufgabegibtloesung
{2}
{

Berechne die Gaußklammer von
\mathl{ - { \frac{ 133 }{ 3 } } }{.}

}
{} {}




\inputaufgabegibtloesung
{5}
{

Zeige mittels vollständiger Induktion für
\mathl{n \geq 1}{} die Formel
\mavergleichskettedisp
{\vergleichskette
{ \sum_{k = 1}^n (-1)^k k }
{ =} { \begin{cases} { \frac{ n }{ 2 } } \text{ bei } n \text{ gerade} , \\ - { \frac{ n+1 }{ 2 } } \text{ bei } n \text{ ungerade} \, . \end{cases} }
{ } { }
{ } { }
{ } { }
} {}{}{}

}
{} {}




\inputaufgabegibtloesung
{4}
{

Betrachte die Folge
\mavergleichskette
{\vergleichskette
{x_n }
{ = }{ (-1)^n }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{x }
{ = }{-1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Welche der Pseudokonvergenzbegriffe (siehe Anhang) treffen zu?

}
{} {}




\inputaufgabegibtloesung
{4}
{

Berechne
\mathdisp {2^{ { \frac{ 9 }{ 10 } } }} { }
bis auf einen Fehler von
\mathl{{ \frac{ 1 }{ 10 } }}{.}

}
{} {}




\inputaufgabegibtloesung
{7}
{

Beweise den Satz über die Stetigkeit der Umkehrfunktion zu einer streng wachsenden, stetigen Funktion \maabb {f} {I} {\R } {,} zu einem Intervall $I\subseteq \R$.

}
{} {}




\inputaufgabegibtloesung
{2}
{

Es sei \maabbdisp {f} {\R} {\R } {} eine bijektive differenzierbare Funktion mit
\mavergleichskette
{\vergleichskette
{ f'(x) }
{ \neq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für alle
\mavergleichskette
{\vergleichskette
{x }
{ \in }{\R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und der Umkehrfunktion $f^{-1}$. Was ist an folgendem \anfuehrung{Beweis}{} für die Ableitung der Umkehrfunktion nicht korrekt?

Es ist
\mavergleichskettedisp
{\vergleichskette
{ { \left( f \circ f^{-1} \right) } (y) }
{ =} { y }
{ } { }
{ } { }
{ } { }
} {}{}{.} Mit der Kettenregel erhalten wir durch beidseitiges Ableiten die Gleichung
\mavergleichskettedisp
{\vergleichskette
{ f' { \left( f^{-1}(y) \right) } { \left( f^{-1} \right) }' (y) }
{ =} { 1 }
{ } { }
{ } { }
{ } { }
} {}{}{.} Also ist
\mavergleichskettedisp
{\vergleichskette
{ { \left( f^{-1} \right) }' (y) }
{ =} { { \frac{ 1 }{ f' { \left( f^{-1}(y) \right) } } } }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabegibtloesung
{4}
{

Es sei \maabbeledisp {f} {\R} {\R_+ } {x} {f(x) } {,} eine differenzierbare Funktion mit
\mathl{f(0)=1}{} und mit
\mathl{f'(x)= \lambda f(x)}{} für alle
\mathl{x \in \R}{} und ein
\mathl{\lambda \in \R}{.} Zeige, dass $f$ die Funktionalgleichung
\mathdisp {f(x+y) = f(x) \cdot f(y)} { }
für alle
\mathl{x,y \in \R}{} erfüllt.

}
{} {}




\inputaufgabegibtloesung
{5}
{

Es sei
\mathdisp {f(x) = x^2+x- { \frac{ 7 }{ 4 } }} { . }
Zu jedem Startwert
\mathl{x_0 \in \R}{} betrachten wir die reelle Folge
\mathdisp {x_n = f^n(x_0)} { , }
es gilt also die rekursive Beziehung
\mathl{x_{n +1} =f(x_{n})}{.} Zeige, dass die Folge für
\mathl{x_0 \in [-2,1]}{} einen Häufungspunkt besitzt.

}
{} {}




\inputaufgabegibtloesung
{7}
{

Beweise die Charakterisierung mit Ableitungen von konvexen Funktionen \maabb {f} {I} {\R } {.}

}
{} {}




\inputaufgabegibtloesung
{2}
{

Bestimme die \definitionsverweis {Ableitung}{}{} der \definitionsverweis {Funktion}{}{} \maabbeledisp {} {\R} {\R } {x} { \sin^{ 2 } \left( \cos x \right) } {.}

}
{} {}




\inputaufgabegibtloesung
{3}
{

Bestimme das \definitionsverweis {Taylor-Polynom}{}{} der Ordnung $4$ zur Funktion
\mavergleichskettedisp
{\vergleichskette
{ f(x) }
{ =} { \sin x }
{ } { }
{ } { }
{ } { }
} {}{}{} im Entwicklungspunkt $\pi/2$.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Beweise die Substitutionsregel zur Integration von stetigen Funktionen.

}
{} {}




\inputaufgabegibtloesung
{5}
{

Eine Person will ein einstündiges Sonnenbad nehmen. Die Intensität der Sonneneinstrahlung werde im Zeitintervall
\mathl{[6,22]}{} \zusatzklammer {in Stunden} {} {} durch die Funktion \maabbeledisp {f} {[6,22] } { \R } {t} {f(t) = -t^3+27t^2-120t } {,} beschrieben. Bestimme den Startzeitpunkt des Sonnenbades, so dass die Gesamtsonnenausbeute maximal wird.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Bestimme die Lösungen der \definitionsverweis {Differentialgleichung}{}{} \zusatzklammer {
\mathl{y>0}{}} {} {}
\mathdisp {y'=t^2y^3} { }
mit dem Lösungsansatz für getrennte Variablen. Was ist der Definitionsbereich der Lösungen?

}
{} {}







\zwischenueberschrift{Anhang}


Es sei
\mathl{{ \left( x_n \right) }_{n \in \N }}{} eine \definitionsverweis {Folge}{}{} in einem \definitionsverweis {angeordneten Körper}{}{} und es sei
\mathl{x \in K}{.}

\aufzaehlungacht{Man sagt, dass die Folge gegen $x$ \definitionswort {hypervergiert} {,} wenn folgende Eigenschaft erfüllt ist.

Zu jedem
\mathbed {\epsilon \in K} {}
{\epsilon > 0} {}
{} {} {} {,} und alle
\mathl{n \in \N}{} gilt die Beziehung
\mavergleichskettedisp
{\vergleichskette
{ \betrag { x_n-x } }
{ \leq} {\epsilon }
{ } { }
{ } { }
{ } { }
} {}{}{.} }{Man sagt, dass die Folge gegen $x$ \definitionswort {supervergiert} {,} wenn folgende Eigenschaft erfüllt ist.

Zu jedem
\mathbed {\epsilon \in K} {}
{\epsilon \geq 0} {}
{} {} {} {,} gibt es ein
\mathl{n_0 \in \N}{} derart, dass für alle
\mathl{n \geq n_0}{} die Beziehung
\mavergleichskettedisp
{\vergleichskette
{ \betrag { x_n-x } }
{ \leq} {\epsilon }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt. }{Man sagt, dass die Folge gegen $x$ \definitionswort {megavergiert} {,} wenn folgende Eigenschaft erfüllt ist.

Es gibt ein
\mathl{n_0 \in \N}{} derart, dass für alle
\mathl{n \geq n_0}{} und jedes
\mathbed {\epsilon \in K} {}
{\epsilon > 0} {}
{} {} {} {,} die Beziehung
\mavergleichskettedisp
{\vergleichskette
{ \betrag { x_n-x } }
{ \leq} {\epsilon }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt. }{Man sagt, dass die Folge gegen $x$ \definitionswort {pseudovergiert} {,} wenn folgende Eigenschaft erfüllt ist.

Zu jedem
\mathbed {\epsilon \in K} {}
{\epsilon > 0} {}
{} {} {} {,} gibt es ein
\mathl{n \in \N}{} derart, dass die Beziehung
\mavergleichskettedisp
{\vergleichskette
{ \betrag { x_n-x } }
{ \leq} {\epsilon }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt. }{Man sagt, dass die Folge gegen $x$ \definitionswort {semivergiert} {,} wenn folgende Eigenschaft erfüllt ist.

Zu jedem
\mathbed {\epsilon \in K} {}
{\epsilon > 0} {}
{} {} {} {,} und jedem
\mathl{n_0 \in \N}{} gibt es ein
\mathl{n \in \N}{,}
\mathl{n \geq n_0}{,} derart, dass die Beziehung
\mavergleichskettedisp
{\vergleichskette
{ \betrag { x_n-x } }
{ \leq} {\epsilon }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt. }{Man sagt, dass die Folge gegen $x$ \definitionswort {protovergiert} {,} wenn folgende Eigenschaft erfüllt ist.

Es gibt ein
\mathbed {\epsilon \in K} {}
{\epsilon > 0} {}
{} {} {} {,} derart, dass für alle
\mathl{n \in \N}{} die Beziehung
\mavergleichskettedisp
{\vergleichskette
{ \betrag { x_n-x } }
{ \leq} {\epsilon }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt. }{Man sagt, dass die Folge gegen $x$ \definitionswort {quasivergiert} {,} wenn folgende Eigenschaft erfüllt ist.

Es gibt ein
\mathbed {\epsilon \in K} {}
{\epsilon > 0} {}
{} {} {} {,} und ein
\mathl{n_0 \in \N}{} derart, dass für alle
\mathl{n \geq n_0}{} die Beziehung
\mavergleichskettedisp
{\vergleichskette
{ \betrag { x_n-x } }
{ \leq} {\epsilon }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt.

}{Man sagt, dass die Folge gegen $x$ \definitionswort {deuterovergiert} {,} wenn folgende Eigenschaft erfüllt ist.

Zu jedem
\mathbed {\epsilon \in K} {}
{\epsilon > 0} {}
{} {} {} {,} gibt es ein
\mathl{n_0 \in \N}{} derart, dass für alle
\mathl{n \geq n_0}{} die Beziehung
\mavergleichskettedisp
{\vergleichskette
{ x_n-x }
{ \leq} {\epsilon }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt. }