Kurs:Analysis (Osnabrück 2013-2015)/Teil I/1/Klausur mit Lösungen

Aus Wikiversity
Zur Navigation springen Zur Suche springen


Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Punkte 4 4 4 3 7 8 4 5 3 3 4 2 8 5 64




Aufgabe (4 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

  1. Das Bild einer Abbildung
  2. Eine Cauchy-Folge in einem angeordneten Körper .
  3. Die Gaußklammer zu einem Element in einem archimedisch angeordneten Körper .
  4. Die Gleichmächtigkeit von zwei Mengen und .
  5. Die Stetigkeit in einem Punkt einer Abbildung .
  6. Die Differenzierbarkeit in einem Punkt einer Abbildung .
  7. Eine Stammfunktion einer Abbildung auf einer offenen Menge .
  8. Die Lösung zu einer gewöhnlichen Differentialgleichung

    wobei

    eine Funktion auf einer offenen Teilmenge ist.


Lösung

  1. Das Bild von ist die Menge
  2. Eine Folge in heißt Cauchy-Folge, wenn folgende Bedingung erfüllt ist: Zu jedem , , gibt es ein derart, dass für alle die Beziehung

    gilt.

  3. Die Gaußklammer ist die größte ganze Zahl .
  4. Die Mengen und heißen gleichmächtig, wenn es eine bijektive Abbildung

    gibt.

  5. Man sagt, dass stetig im Punkt ist, wenn es zu jedem ein derart gibt, dass für alle mit die Abschätzung gilt.
  6. Man sagt, dass differenzierbar in ist, wenn der Limes

    existiert.

  7. Eine Funktion

    heißt Stammfunktion zu , wenn auf differenzierbar ist und für alle gilt.

  8. Unter einer Lösung der Differentialgleichung versteht man eine Funktion

    auf einem mehrpunktigen Intervall , die folgende Eigenschaften erfüllt.

    1. Es ist für alle .
    2. Die Funktion ist differenzierbar.
    3. Es ist für alle .


Aufgabe (4 Punkte)

Formuliere die folgenden Sätze.

  1. Das Leibnizkriterium für alternierende Reihen.
  2. Das Folgenkriterium für die Stetigkeit einer Funktion
    in einem Punkt .
  3. Das Additionstheorem für den Sinus.
  4. Der Hauptsatz der Infinitesimalrechnung für eine stetige Funktion
    auf einem reellen Intervall .


Lösung

  1. Sei eine fallende Nullfolge von nichtnegativen [[{{:MDLUL/{{Expansion depth limit exceeded|dient dazu, einen bestimmten mathematischen Begriff, wie er in einem mathematischen Text vorkommt, auf die gemeinte Definition umzuleiten, um dadurch einen funktionierenden Link zu erzeugen.}}Start= {{Expansion depth limit exceeded|Siehe=
    MDLUL/
    Ziel=[[{{Expansion depth limit exceeded|opt=Ziel}}]]|Ziel=[[]]}}|opt=Ziel}}|reellen Zahlen]]. Dann [[{{:MDLUL/{{Expansion depth limit exceeded|dient dazu, einen bestimmten mathematischen Begriff, wie er in einem mathematischen Text vorkommt, auf die gemeinte Definition umzuleiten, um dadurch einen funktionierenden Link zu erzeugen.}}Start= {{Expansion depth limit exceeded|Siehe=
    MDLUL/
    Ziel=[[{{Expansion depth limit exceeded|opt=Ziel}}]]|Ziel=[[]]}}|opt=Ziel}}|konvergiert]] die Reihe .
  2. Die Stetigkeit von im Punkt ist äquivalent dazu, dass für jede Folge , die gegen konvergiert, die Bildfolge gegen konvergiert.
  3. Für gilt
  4. Satzantwort Für einen beliebigen Punkt ist die Integralfunktion

    [[{{:MDLUL/{{Expansion depth limit exceeded|dient dazu, einen bestimmten mathematischen Begriff, wie er in einem mathematischen Text vorkommt, auf die gemeinte Definition umzuleiten, um dadurch einen funktionierenden Link zu erzeugen.}}Start= {{Expansion depth limit exceeded|Siehe=
    MDLUL/
    Ziel=[[{{Expansion depth limit exceeded|opt=Ziel}}]]|Ziel=[[]]}}|opt=Ziel}}|differenzierbar]]

    und es gilt
    für alle .


Aufgabe (4 Punkte)

Es seien reelle Zahlen. Zeige, dass

genau dann gilt, wenn es ein mit gibt.


Lösung

Es sei . Da ganze Zahlen sind, ist ganzzahlig. Damit gilt

Sei nun mit . Aus der definierenden Beziehung

folgt

daher muss

sein. Somit ist


Aufgabe (3 Punkte)

Entscheide, ob die reelle Folge

(mit ) in konvergiert und bestimme gegebenenfalls den Grenzwert.


Lösung

Wir erweitern mit und erhalten

Folgen der Form , , konvergieren gegen , nach den Rechengesetzen für konvergente Folgen konvergiert diese Folge also gegen .


Aufgabe (7 Punkte)

Beweise das Folgenkriterium für die Stetigkeit einer Funktion in einem Punkt .


Lösung

Es bezeichne (1) die Stetigkeit von im Punkt und (2) die Eigenschaft, dass für jede gegen konvergente Folge die Bildfolge gegen konvergiert. Wir müssen die Äquivalenz von (1) und (2) zeigen.

Sei (1) erfüllt und sei eine Folge in , die gegen konvergiert. Wir müssen zeigen, dass

ist. Dazu sei vorgegeben. Wegen (1) gibt es ein mit der angegebenen Abschätzungseigenschaft und wegen der Konvergenz von gegen gibt es eine natürliche Zahl derart, dass für alle die Abschätzung

gilt. Nach der Wahl von ist dann

so dass die Bildfolge gegen konvergiert.
Sei (2) erfüllt.  Wir nehmen an, dass nicht stetig ist. Dann gibt es ein derart, dass es für alle Elemente gibt, deren Abstand zu maximal gleich ist, deren Wert unter der Abbildung aber zu einen Abstand besitzt, der größer als ist. Dies gilt dann insbesondere für die Stammbrüche , . D.h. für jede natürliche Zahl gibt es ein mit

Diese so konstruierte Folge konvergiert gegen , aber die Bildfolge konvergiert nicht gegen , da der Abstand der Bildfolgenglieder zu zumindest ist. Dies ist ein Widerspruch zu (2).


Aufgabe (8 Punkte)

Zeige, dass es stetige Funktionen

mit derart gibt, dass für alle weder noch die Nullfunktion ist.


Lösung

Wir betrachten die Zerlegung von in die unendlich vielen halboffenen Intervalle für und . Auf , , definieren wir die stetige Funktion durch

Diese Funktion hat an den Intervallgrenzen den Wert . Die Ableitung ist

das Maximum liegt also im arithmetischen Mittel der Intervallgrenzen vor und besitzt den Wert

Mit Hilfe dieser Funktionen definieren wir

und

Diese Funktionen sind stetig: Dies ist im Innern der Intervalle klar; an den Intervallgrenzen liegt stets der Wert vor; für den Nullpunkt ergibt sich die Stetigkeit, da die Funktionen auf durch beschränkt sind. Offenbar ist und für jedes sind weder noch die Nullfunktion.


Aufgabe (4 Punkte)

Wir betrachten das Polynom

Bestimme die -Koordinaten sämtlicher Schnittpunkte der Tangente an im Punkt mit dem Graphen von .


Lösung

Es ist

und

Die Tangente ist also der Graph der Funktion . Wir müssen sämtliche Punkte mit bestimmen, wobei der Punkt dazugehört. Dazu betrachten wir

Polynomdivision durch ergibt

Die Nullstellen von sind


Aufgabe (5 Punkte)

Wir betrachten die durch

definierte Funktion

Zeige, dass es zu jedem , eine Nullfolge derart gibt, dass die Folge der Differenzenquotienten

gegen konvergiert.


Lösung

Zu jedem gibt es ein mit . Wir setzen

Dies ist offenbar eine Nullfolge in . Die zugehörigen Differenzenquotienten sind

Also ist die Folge dieser Differenzenquotienten konstant gleich .


Aufgabe (3 Punkte)

Bestimme für die Funktion

die Extrema.


Lösung

Wir schreiben

Zur Bestimmung der Extrema betrachten wir die Ableitung, diese ist

Die Bedingung führt durch Multiplikation mit und Division durch (die beide nicht sind) auf

Daher muss

sein, woraus sich

also ergibt. Die zweite Ableitung ist

und somit positiv, also liegt im Nullpunkt ein isoliertes lokales Minimum vor. Da die Ableitung keine weitere Nullstelle hat, ist dieses Minimum das einzige Minimum und daher ein globales Minimum und es gibt keine Maxima.


Aufgabe (3 Punkte)

Bestimme die Taylor-Reihe der Funktion im Punkt bis zur Ordnung (man gebe also das Taylor-Polynom vom Grad zum Entwicklungspunkt an, wobei die Koeffizienten in einer möglichst einfachen Form angegeben werden sollen).


Lösung

Die erste Ableitung ist

Die zweite Ableitung ist

Die dritte Ableitung ist
Die vierte Ableitung ist

Das Taylor-Polynom vom Grad ist demnach

bzw.


Aufgabe (4 Punkte)

Die beiden lokalen Extrema der Funktion

definieren ein achsenparalleles Rechteck, das vom Funktionsgraphen in zwei Bereiche zerlegt wird. Bestimme deren Flächeninhalte.


Lösung

Es ist

Die Ableitung hat also bei und bei eine Nullstelle. Wegen liegt bei ein lokales Maximum mit dem Wert und bei ein lokales Minimum mit dem Wert vor. Der Flächeninhalt des Rechtecks ist . Der Flächeninhalt des Teilbereichs des Rechteckes unterhalb des Graphen ist

Der Flächeninhalt des Teilbereichs des Rechteckes oberhalb des Graphen ist ebenfalls .


Aufgabe (2 Punkte)

Berechne das bestimmte Integral zur Funktion

über .


Lösung

Eine Stammfunktion ist
Daher ist das bestimmte Integral gleich


Aufgabe (8 (4+1+3) Punkte)

a) Bestimme die reelle Partialbruchzerlegung von

b) Bestimme eine Stammfunktion von

c) Bestimme eine Stammfunktion von


Lösung

Es ist

Damit liegt die Faktorzerlegung des Nenners vor, so dass die Partialbruchzerlegung die Gestalt

mit reellen Zahlen besitzt. Multiplikation mit dem Hauptnenner ergibt

Einsetzen von ergibt , also .

Einsetzen von ergibt , also .

Einsetzen von ergibt , also ist , also .

Einsetzen von ergibt

Also ist und daher . Die Partialbruchzerlegung ist also

b) Eine Stammfunktion von

ist

c) Es ist

Wir wenden die Standardsubstitution an und erhalten

Nach Teil b) ist

eine Stammfunktion von .


Aufgabe (5 (3+2) Punkte)

a) Bestimme eine Lösung der Differentialgleichung

mit dem Lösungsansatz für getrennte Variablen.

b) Bestimme die Lösung des Anfangswertproblems


Lösung

a) Wir setzen und . Eine Stammfunktion von ist und eine Stammfunktion von ist . Die Umkehrfunktion von ist

Daher ist

eine Lösung der Differentialgleichung.

b) Wir machen den Ansatz mit der Umkehrfunktion

was zur Lösung(sschar) führt. Aus

folgt . Also ist

die Lösung des Anfangswertproblems.

Zur pdf-Version dieser Klausur

Zur pdf-Version der Lösungen