Kurs:Grundkurs Mathematik/Teil II/19/Klausur/latex

Aus Wikiversity
Zur Navigation springen Zur Suche springen

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{ . 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}

%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 5 }

\renewcommand{\avier}{ 2 }

\renewcommand{\afuenf}{ 2 }

\renewcommand{\asechs}{ 2 }

\renewcommand{\asieben}{ 3 }

\renewcommand{\aacht}{ 1 }

\renewcommand{\aneun}{ 5 }

\renewcommand{\azehn}{ 6 }

\renewcommand{\aelf}{ 8 }

\renewcommand{\azwoelf}{ 4 }

\renewcommand{\adreizehn}{ 7 }

\renewcommand{\avierzehn}{ 4 }

\renewcommand{\afuenfzehn}{ 5 }

\renewcommand{\asechzehn}{ 4 }

\renewcommand{\asiebzehn}{ 64 }

\renewcommand{\aachtzehn}{ }

\renewcommand{\aneunzehn}{ }

\renewcommand{\azwanzig}{ }

\renewcommand{\aeinundzwanzig}{ }

\renewcommand{\azweiundzwanzig}{ }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabellesechzehn

\klausurnote

\newpage


\setcounter{section}{0}




\inputaufgabegibtloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Ein \stichwort {Erzeugendensystem} {} des $K^n$.

}{Ein \stichwort {Repräsentantensystem} {} zu einer Äquivalenzrelation $\sim$ auf einer Menge $M$.

}{Ein \stichwort {Ringhomomorphismus} {} \maabbdisp {\varphi} {R} {S } {} zwischen \definitionsverweis {Ringen}{}{} \mathkor {} {R} {und} {S} {.}

}{Die \stichwort {Konvergenz} {} einer Folge
\mathl{{ \left( x_n \right) }_{n \in \N }}{} in einem angeordneten Körper $K$ gegen $x \in K$.

}{Die Zahl $\pi$.

}{Der \stichwort {Produktraum} {} der diskreten Wahrscheinlichkeitsräume
\mathl{(M_1, \mu_1) , \ldots , (M_n, \mu_n)}{.} }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Der Satz über die Äquivalenzrelation zu einer Abbildung \maabb {f} { M} {N } {.}}{Der Satz über die Irrationalität von Wurzeln aus natürlichen Zahlen.}{Der Satz über die Homomorphismuseigenschaft der reellen Exponentialfunktionen.}

}
{} {}




\inputaufgabegibtloesung
{5 (3+1+1)}
{

In der großen Pause fährt das Süßwarenmobil von Raul Zucchero auf den Schulhof. Gabi kauft einen Schokoriegel, zwei Packungen Brausepulver und drei saure Zungen und zahlt dafür $1,30$ \euro . Lucy kauft zwei Schokoriegel, eine Packung Brausepulver und zwei saure Zungen und zahlt dafür $1,60$ \euro . Veronika kauft drei Packungen Brausepulver und vier saure Zungen und zahlt dafür einen Euro. \aufzaehlungdrei{Kann man daraus die Preise rekonstruieren? }{Wie sieht es aus, wenn man weiß, dass die Preise volle positive Centbeträge sind? }{Wie sieht es aus, wenn man weiß, dass die Preise positive Vielfache von Zehn-Cent-Beträgen sind? }

}
{} {}




\inputaufgabegibtloesung
{2}
{

Berechne das \definitionsverweis {Matrizenprodukt}{}{}
\mathdisp {\begin{pmatrix} 6 & 0 & -1 & -3 \\ 7 & 3 & 0 & -7 \\ 6 & 5 & -3 & -2 \end{pmatrix} \cdot \begin{pmatrix} 0 & 4 & -2 \\ 2 & -1 & 7 \\ 2 & 4 & 8 \\ 1 & 0 & 1 \end{pmatrix}} { . }

}
{} {}




\inputaufgabegibtloesung
{2}
{

Bestimme die \definitionsverweis {inverse Matrix}{}{} von
\mathdisp {\begin{pmatrix} 3 { \frac{ 1 }{ 4 } } & 0 & 0 & 0 \\ 0 & { \frac{ 1 }{ 5 } } & 0 & 0 \\ 0 & 0 & 2 { \frac{ 2 }{ 7 } } & 0 \\ 0 & 0 & 0 & { \frac{ 3 }{ 11 } } \end{pmatrix}} { , }
die Angaben sind dabei als gemischte Brüche zu verstehen und das Ergebnis soll ebenso angegeben werden.

}
{} {}




\inputaufgabegibtloesung
{2 (0.5+0.5+0.5+0.5)}
{






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Europäische Wasserscheiden.eps} }
\end{center}
\bildtext {} }

\bildlizenz { Europäische Wasserscheiden.png } {} {Sansculotte} {de Wikipedia} {CC-by-sa 3.0} {}

Wir nennen zwei Flüsse in Europa äquivalent, wenn sie letztlich in das gleiche Meer entwässern, wobei wir die Einteilungen der Karte übernehmen. \aufzaehlungvier{Wie viele Äquialenzklassen gibt es? }{Ist der Rhein zur Donau äquivalent? }{Ist die Hase zur Themse äquivalent? }{Man gebe zwei Repräsentanten für die Äquivalenzklasse Ostsee an. }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Zeige, dass der \definitionsverweis {Kern}{}{} eines \definitionsverweis {Ringhomomorphismus}{}{} \maabbdisp {\varphi} {R} {S } {} ein \definitionsverweis {Ideal}{}{} in $R$ ist.

}
{} {}




\inputaufgabegibtloesung
{1}
{

Negiere die Aussage, dass eine Folge
\mathl{x_n}{} in einem angeordneten Körper gegen $x$ \definitionsverweis {konvergiert}{}{,} durch Umwandlung der Quantoren.

}
{} {}




\inputaufgabegibtloesung
{5}
{

Es sei
\mathl{{ \left( x_n \right) }_{n \in \N }}{} eine Folge in einem \definitionsverweis {archimedisch angeordneten Körper}{}{} $K$ und sei
\mavergleichskette
{\vergleichskette
{a }
{ \in }{K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein Element mit
\mavergleichskette
{\vergleichskette
{0 }
{ \leq }{a }
{ < }{1 }
{ }{ }
{ }{ }
} {}{}{.} Es gebe ein $N$ derart, dass
\mavergleichskettedisp
{\vergleichskette
{ \betrag { x_{n+1} - x_n } }
{ \leq} { a^n }
{ } { }
{ } { }
{ } { }
} {}{}{} gelte für alle
\mavergleichskette
{\vergleichskette
{n }
{ \geq }{N }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Zeige, dass
\mathl{{ \left( x_n \right) }_{n \in \N }}{} eine \definitionsverweis {Cauchy-Folge}{}{} ist.

}
{} {}




\inputaufgabegibtloesung
{6 (3+3)}
{

Wir betrachten eine Rekursionsvorschrift, die zu einen Zahlendreieck \zusatzklammer {analog zum Pascalschen Dreieck} {} {} führt. In der ersten Zeile steht zentral die $256$, links und rechts davon stehen unendlich viele $1$ \zusatzklammer {die nicht aufgeführt werden müssen} {} {.} Die jeweils nächste Zeile entsteht, indem man von zwei benachbarten Zahlen der Vorgängerzeile das \definitionsverweis {geometrische Mittel}{}{} nimmt und das Ergebnis darunter in der neuen Zeile platziert. \aufzaehlungzwei {Bestimme die ersten Zeilen dieses Zahlendreiecks, bis sämtliche Einträge kleiner als $6$ sind. } {Welche Eigenschaft gilt in jeder Zeile? Warum? }

}
{} {}




\inputaufgabegibtloesung
{10 (1+1+5+2+1)}
{

Es sei $M$ die Menge derjenigen rationalen Zahlen, deren Dezimalentwicklung die Periodenlänge $0,1$ oder $3$ besitzt \zusatzklammer {Periodenlänge $0$ bedeutet \definitionsverweis {Dezimalbruch}{}{}} {} {.} \aufzaehlungfuenf{Gehört
\mathl{{ \frac{ 1 }{ 11 } }}{} zu $M$? }{Gehört
\mathl{{ \frac{ 1 }{ 37 } }}{} zu $M$? }{Wie sieht man einem gekürzten Bruch
\mathl{a/b}{} an, ob er zu $M$ gehört oder nicht? }{Ist $M$ mit der Addition eine Untergruppe von $\R$? }{Ist $M$ mit der Addition und der Multiplikation ein Unterring von $\R$? }

}
{} {}




\inputaufgabegibtloesung
{4}
{

Es sei
\mathbed {I_n} {}
{n \in \N} {}
{} {} {} {,} eine \definitionsverweis {Intervallschachtelung}{}{} in $\R$. Zeige, dass der Durchschnitt
\mathdisp {\bigcap_{n \in \N} I_n} { }
aus genau einem Punkt
\mathl{x \in \R}{} besteht.

}
{} {}




\inputaufgabegibtloesung
{7}
{

Beweise das Folgenkriterium für die Stetigkeit einer Funktion \maabb {f} {\R} {\R } {} in einem Punkt
\mathl{x \in \R}{.}

}
{} {}




\inputaufgabegibtloesung
{4 (1+3)}
{

\aufzaehlungzwei {Skizziere die Graphen der Funktionen \maabbeledisp {f} {\R_+} { \R } {x} {x-1 } {,} und \maabbeledisp {g} {\R_+} { \R } {x} { { \frac{ 1 }{ x } } } {,} } {Bestimme die Schnittpunkte der beiden Graphen. }

}
{} {}




\inputaufgabegibtloesung
{5 (2+2+1)}
{

Gabi Hochster möchte heute abend mit einem Jungen ihrer Klasse ins Kino. Erfahrungsgemäß sagt ein Junge, den sie fragt, mit Wahrscheinlichkeit ${ \frac{ 1 }{ 3 } }$ zu und mit Wahrscheinlichkeit ${ \frac{ 2 }{ 3 } }$ ab. Einerseits möchte sie eine Begleitung haben, andererseits möchte sie auch ungern bei vielen selbst absagen, falls zu viele zusagen. Deshalb fragt sie $5$ Jungs. \aufzaehlungdrei{Bestimme die Wahrscheinlichkeit, dass alle $5$ absagen \zusatzklammer {als Bruch und als Prozentangabe} {} {.} }{Bestimme die Wahrscheinlichkeit, dass genau einer zusagt. }{Bestimme die Wahrscheinlichkeit, dass sie mindestens einem Jungen absagen muss. }

}
{} {}




\inputaufgabegibtloesung
{4}
{

Es sei
\mathl{B \subseteq M}{} eine Teilmenge eines \definitionsverweis {endlichen Wahrscheinlichkeitsraumes}{}{} $M$ mit positiver Wahrscheinlichkeit. Es sei $E$ ein weiteres Ereignis und es gelte
\mavergleichskettedisp
{\vergleichskette
{ P ( E {{|}} B ) }
{ \geq} { P(E) }
{ } { }
{ } { }
{ } { }
} {}{}{.} Zeige, dass dann
\mavergleichskettedisp
{\vergleichskette
{ P ( E {{|}} M \setminus B ) }
{ \leq} { P(E ) }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt.

}
{} {}