Kurs:Grundkurs Mathematik/Teil II/26/Klausur

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Punkte 3 3 0 0 0 0 0 0 0 8 0 3 3 2 4 0 0 0 26



Aufgabe * (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

  1. Eine Diagonalmatrix.
  2. Eine Ordnungsrelation auf einer Menge .
  3. Ein Ringhomomorphismus

    zwischen Ringen und .

  4. Eine Intervallschachtelung in einem angeordneten Körper .
  5. Ein Winkel im Bogenmaß.
  6. Ein Ereignis in einem diskreten Wahrscheinlichkeitsraum .


Aufgabe * (3 Punkte)

Formuliere die folgenden Sätze.

  1. Der Satz über die Äquivalenzrelation zu einer Abbildung .
  2. Der Satz über die Konvergenz der geometrischen Reihe.
  3. Die Formel für die totale Wahrscheinlichkeit.


Aufgabe (0 Punkte)


Aufgabe (0 Punkte)


Aufgabe (0 Punkte)


Aufgabe (0 Punkte)


Aufgabe (0 Punkte)


Aufgabe (0 Punkte)


Aufgabe (0 Punkte)


Aufgabe * (8 (2+3+3) Punkte)

Wir betrachten einen Kreis (mit Radius ) und darin eingeschriebene regelmäßige -Ecke.

  1. Circumscribed2.png

    In den Kreis sei ein Quadrat eingeschrieben. Bestimme dessen Flächeninhalt und dessen Umfang.

  2. Hagalaz.jpg

    In den Kreis sei ein regelmäßiges -Eck eingeschrieben. Bestimme dessen Flächeninhalt und dessen Umfang.

  3. Der Flächeninhalt eines eingeschriebenen regelmäßigen -Ecks ist eine Approximation für den Flächeninhalt des Kreises und der Umfang eines solchen -Ecks ist eine Approximation für den Umfang des Kreises. Welche Approximationen sind besser?


Aufgabe (0 Punkte)


Aufgabe (3 Punkte)

Aufgrund der Wohldefiniertheit der Addition und der Multiplikation für die reellen Zahlen können wir je zwei Zahlen, die in der Form

(mit Ziffern aus , die nach rechts unendlich weiter gehen können) miteinander addieren und multiplizieren, insbesondere kommt dabei wieder eine Zahl in einer solchen Form heraus. Jemand kommt auf folgende Idee: „Es müsste dann ebenfalls möglich sein, auch Zahlen der Form

die also nach links unendlich weiter gehen dürfen, miteinander zu addieren und zu multiplizieren. Die Situation ist ja völlig symmetrisch

(Spiegelung an der Einerstelle) zur Dezimalentwicklung und man muss nur die gleichen Rechenregeln analog anwenden“. Was ist davon zu halten?


Aufgabe * (3 Punkte)

Professor Knopfloch muss mal wieder Geschirr abwaschen. Bekanntlich wird die Spülgeschwindigkeit durch die internationale Maßeinheit „ein Spüli“ ausgedrückt. Ein Spüli liegt vor, wenn man einen Quadratmeter Geschirroberfläche pro Sekunde spült. Professors Knopfloch Spülgeschwindigkeit beträgt Spülies. Er muss große Teller mit einem Durchmesser von Zentimetern, kleine Teller mit einem Durchmesser von Zentimetern und zylinderförmige Becher, die Zentimeter hoch sind und einen Durchmesser von Zentimetern besitzen, spülen. Wie lange braucht er für den reinen Abwasch (man ignoriere die Dicke des Geschirrs)?


Aufgabe * (2 Punkte)

Eine leere Flasche stand über Nacht draußen und es hat dann angefangen zu regnen. Am Morgen steht in der Flasche Wasser in einer Höhe von cm. Die Flaschenöffnung hat einen (inneren) Durchmesser von cm und die Flasche hat einen Durchmesser von cm. Wie viel Regen fiel in der Nacht (gemessen in Zentimetern)?


Aufgabe * (4 Punkte)

Wir betrachten die positiven reellen Zahlen mit den Verknüpfungen

als neuer Addition und

als neuer Multiplikation. Ist mit diesen Verknüpfungen (und mit welchen neutralen Elementen) ein Körper?


Aufgabe (0 Punkte)


Aufgabe (0 Punkte)


Aufgabe (0 Punkte)