Kurs:Grundkurs Mathematik/Teil II/26/Klausur/latex

Aus Wikiversity
Zur Navigation springen Zur Suche springen

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{ . 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}


%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 0 }

\renewcommand{\avier}{ 0 }

\renewcommand{\afuenf}{ 0 }

\renewcommand{\asechs}{ 0 }

\renewcommand{\asieben}{ 0 }

\renewcommand{\aacht}{ 0 }

\renewcommand{\aneun}{ 0 }

\renewcommand{\azehn}{ 8 }

\renewcommand{\aelf}{ 0 }

\renewcommand{\azwoelf}{ 3 }

\renewcommand{\adreizehn}{ 3 }

\renewcommand{\avierzehn}{ 2 }

\renewcommand{\afuenfzehn}{ 4 }

\renewcommand{\asechzehn}{ 0 }

\renewcommand{\asiebzehn}{ 0 }

\renewcommand{\aachtzehn}{ 0 }

\renewcommand{\aneunzehn}{ 26 }

\renewcommand{\azwanzig}{ }

\renewcommand{\aeinundzwanzig}{ }

\renewcommand{\azweiundzwanzig}{ }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabelleachtzehn


\klausurnote

\newpage


\setcounter{section}{0}




\inputaufgabegibtloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Eine \stichwort {Diagonalmatrix} {.}

}{Eine \stichwort {Ordnungs} {}relation $\preccurlyeq$ auf einer Menge $I$.

}{Ein \stichwort {Ringhomomorphismus} {} \maabbdisp {\varphi} {R} {S } {} zwischen \definitionsverweis {Ringen}{}{} \mathkor {} {R} {und} {S} {.}

}{Eine \stichwort {Intervallschachtelung} {} in einem angeordneten Körper $K$.

}{Ein Winkel im \stichwort {Bogenmaß} {.}

}{Ein \stichwort {Ereignis} {} in einem diskreten Wahrscheinlichkeitsraum
\mathl{M}{.} }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Der Satz über die Äquivalenzrelation zu einer Abbildung \maabb {f} { M} {N } {.}}{Der Satz über die Konvergenz der geometrischen Reihe.}{Die \stichwort {Formel für die totale Wahrscheinlichkeit} {.}}

}
{} {}




\inputaufgabe
{0}
{

}
{} {}




\inputaufgabe
{0}
{

}
{} {}




\inputaufgabe
{0}
{

}
{} {}




\inputaufgabe
{0}
{

}
{} {}




\inputaufgabe
{0}
{

}
{} {}




\inputaufgabe
{0}
{

}
{} {}




\inputaufgabe
{0}
{

}
{} {}




\inputaufgabegibtloesung
{8 (2+3+3)}
{

Wir betrachten einen Kreis \zusatzklammer {mit Radius $1$} {} {} und darin eingeschriebene regelmäßige $n$-Ecke. \aufzaehlungdrei{




\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Circumscribed2.eps} }
\end{center}
\bildtext {} }

\bildlizenz { Circumscribed2.png } {} {Maksim} {Commons} {gemeinfrei} {}

In den Kreis sei ein Quadrat eingeschrieben. Bestimme dessen Flächeninhalt und dessen Umfang. }{




\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Hagalaz.eps} }
\end{center}
\bildtext {} }

\bildlizenz { Hagalaz.jpg } {} {Dupuis pierre} {Commons} {CC-by-sa 3.0} {}

In den Kreis sei ein regelmäßiges $6$-Eck eingeschrieben. Bestimme dessen Flächeninhalt und dessen Umfang. }{Der Flächeninhalt eines eingeschriebenen regelmäßigen $n$-Ecks ist eine Approximation für den Flächeninhalt des Kreises und der Umfang eines solchen $n$-Ecks ist eine Approximation für den Umfang des Kreises. Welche Approximationen sind besser? }

}
{} {}




\inputaufgabe
{0}
{

}
{} {}




\inputaufgabe
{3}
{

Aufgrund der Wohldefiniertheit der Addition und der Multiplikation für die reellen Zahlen können wir je zwei Zahlen, die in der Form
\mathdisp {z_n z_{n-1} \ldots z_1z_0,z_{-1} z_{-2} \ldots} { }
\zusatzklammer {mit Ziffern $z_i$ aus
\mathl{\{0,1 , \ldots , 9\}}{,} die nach rechts unendlich weiter gehen können} {} {} miteinander addieren und multiplizieren, insbesondere kommt dabei wieder eine Zahl in einer solchen Form heraus. Jemand kommt auf folgende Idee: \anfuehrung{Es müsste dann ebenfalls möglich sein, auch Zahlen der Form
\mathdisp {\ldots z_1z_0,z_{-1} z_{-2} \ldots z_{-k}} { , }
die also nach links unendlich weiter gehen dürfen, miteinander zu addieren und zu multiplizieren. Die Situation ist ja völlig symmetrisch \zusatzklammer {Spiegelung an der Einerstelle} {} {} zur Dezimalentwicklung und man muss nur die gleichen Rechenregeln analog anwenden}{.} Was ist davon zu halten?

}
{} {}




\inputaufgabegibtloesung
{3}
{

Professor Knopfloch muss mal wieder Geschirr abwaschen. Bekanntlich wird die Spülgeschwindigkeit durch die internationale Maßeinheit \anfuehrung{ein Spüli}{} ausgedrückt. Ein Spüli liegt vor, wenn man einen Quadratmeter Geschirroberfläche pro Sekunde spült. Professors Knopfloch Spülgeschwindigkeit beträgt
\mathl{0,005}{} Spülies. Er muss $10$ große Teller mit einem Durchmesser von $30$ Zentimetern, $6$ kleine Teller mit einem Durchmesser von $20$ Zentimetern und $4$ zylinderförmige Becher, die $10$ Zentimeter hoch sind und einen Durchmesser von $6$ Zentimetern besitzen, spülen. Wie lange braucht er für den reinen Abwasch \zusatzklammer {man ignoriere die Dicke des Geschirrs} {} {?}

}
{} {}




\inputaufgabegibtloesung
{2}
{

Eine leere Flasche stand über Nacht draußen und es hat dann angefangen zu regnen. Am Morgen steht in der Flasche Wasser in einer Höhe von ${ \frac{ 1 }{ 2 } }$ cm. Die Flaschenöffnung hat einen \zusatzklammer {inneren} {} {} Durchmesser von $2$ cm und die Flasche hat einen Durchmesser von $6$ cm. Wie viel Regen fiel in der Nacht \zusatzklammer {gemessen in Zentimetern} {} {?}

}
{} {}




\inputaufgabegibtloesung
{4}
{

Wir betrachten die positiven reellen Zahlen
\mathl{\R_+}{} mit den Verknüpfungen
\mavergleichskettedisp
{\vergleichskette
{x \oplus y }
{ \defeq} { x \cdot y }
{ } { }
{ } { }
{ } { }
} {}{}{} als neuer Addition und
\mavergleichskettedisp
{\vergleichskette
{ x \otimes y }
{ \defeq} { e^{ ( \ln x )( \ln y )} }
{ } { }
{ } { }
{ } { }
} {}{}{} als neuer Multiplikation. Ist $\R_+$ mit diesen Verknüpfungen \zusatzklammer {und mit welchen neutralen Elementen} {} {} ein \definitionsverweis {Körper}{}{?}

}
{} {}




\inputaufgabe
{0}
{

}
{} {}




\inputaufgabe
{0}
{

}
{} {}




\inputaufgabe
{0}
{

}
{} {}