Kurs:Mathematik für Anwender/Teil I/1/Klausur/latex

Aus Wikiversity

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{ . 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}


%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 3 }

\renewcommand{\avier}{ 2 }

\renewcommand{\afuenf}{ 2 }

\renewcommand{\asechs}{ 5 }

\renewcommand{\asieben}{ 3 }

\renewcommand{\aacht}{ 4 }

\renewcommand{\aneun}{ 7 }

\renewcommand{\azehn}{ 4 }

\renewcommand{\aelf}{ 2 }

\renewcommand{\azwoelf}{ 3 }

\renewcommand{\adreizehn}{ 5 }

\renewcommand{\avierzehn}{ 2 }

\renewcommand{\afuenfzehn}{ 4 }

\renewcommand{\asechzehn}{ 4 }

\renewcommand{\asiebzehn}{ 3 }

\renewcommand{\aachtzehn}{ 4 }

\renewcommand{\aneunzehn}{ 1 }

\renewcommand{\azwanzig}{ 64 }

\renewcommand{\aeinundzwanzig}{ }

\renewcommand{\azweiundzwanzig}{ }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabelleneunzehn


\klausurnote

\newpage


\setcounter{section}{0}




\inputaufgabegibtloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Die \stichwort {Vereinigung} {} der Mengen \mathkor {} {L} {und} {M} {.}

}{Eine \stichwort {bijektive} {} Abbildung \maabbdisp {f} {M} {N } {.}

}{Die \stichwort {geometrische Reihe} {} für
\mavergleichskette
{\vergleichskette
{ x }
{ \in }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}{Der \stichwort {Logarithmus zur Basis} {}
\mathbed {b \in \R_+} {}
{b \neq 1} {}
{} {} {} {,} einer positiven reellen Zahl $x$.

}{\stichwort {Äquivalente} {} \zusatzklammer {inhomogene} {} {} \definitionsverweis {lineare Gleichungssysteme}{}{} zur gleichen Variablenmenge über einem \definitionsverweis {Körper}{}{} $K$.

}{Die \stichwort {Determinante} {} einer $n \times n$-\definitionsverweis {Matrix}{}{} $M$. }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Das Induktionsprinzip für Aussagen.}{Die Ableitung des natürlichen Logarithmus.}{Die \stichwort {Dimensionsformel} {} für eine \definitionsverweis {lineare Abbildung}{}{} \maabbdisp {\varphi} {V} {W } {.}}

}
{} {}




\inputaufgabegibtloesung
{3}
{

Zeige, dass für jede natürliche Zahl
\mavergleichskette
{\vergleichskette
{n }
{ \geq }{ 1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die Abschätzung
\mavergleichskettedisp
{\vergleichskette
{ 3^n }
{ \geq} { n^3 }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt.

}
{} {}




\inputaufgabegibtloesung
{2}
{

Zwei Fahrradfahrer, \mathkor {} {A} {und} {B} {,} fahren auf ihren Fahrrädern eine Straße entlang. Fahrer $A$ macht pro Minute $40$ Pedalumdrehungen, hat eine Übersetzung von Pedal zu Hinterrad von $1$ zu $6$ und Reifen mit einem Radius von $39$ Zentimetern. Fahrer $B$ braucht für eine Pedaldrehung $2$ Sekunden, hat eine Übersetzung von $1$ zu $7$ und Reifen mit einem Radius von $45$ Zentimetern.

Wer fährt schneller?

}
{} {}




\inputaufgabegibtloesung
{2 (0.5+1+0.5)}
{

a) Berechne
\mathdisp {(4-7 { \mathrm i})(5+3 { \mathrm i})} { . }

b) Bestimme das inverse Element
\mathl{z^{-1}}{} zu
\mavergleichskettedisp
{\vergleichskette
{ z }
{ =} { 3+4 { \mathrm i} }
{ } { }
{ } { }
{ } { }
} {}{}{.}

c) Welchen Abstand hat $z^{-1}$ aus Teil (b) zum Nullpunkt?

}
{} {}




\inputaufgabegibtloesung
{5}
{

Es seien \mathkor {} {{ \left( x_n \right) }_{n \in \N }, \, { \left( y_n \right) }_{n \in \N }} {und} {{ \left( z_n \right) }_{n \in \N }} {} drei \definitionsverweis {reelle Folgen}{}{.} Es gelte $x_n \leq y_n \leq z_n \text{ für alle } n \in \N$ und \mathkor {} {{ \left( x_n \right) }_{n \in \N }} {und} {{ \left( z_n \right) }_{n \in \N }} {} \definitionsverweis {konvergieren}{}{} beide gegen den gleichen Grenzwert $a$. Zeige, dass dann auch ${ \left( y_n \right) }_{n \in \N }$ gegen $a$ konvergiert.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Führe die ersten drei Schritte des babylonischen Wurzelziehens zu
\mavergleichskette
{\vergleichskette
{b }
{ = }{7 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit dem Startwert
\mavergleichskette
{\vergleichskette
{x_0 }
{ = }{3 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} durch \zusatzklammer {es sollen also die Approximationen
\mathl{x_1,x_2,x_3}{} für $\sqrt{7}$ berechnet werden; diese Zahlen müssen als gekürzte Brüche angegeben werden} {} {.}

}
{} {}




\inputaufgabegibtloesung
{4}
{

Untersuche, ob die Reihe
\mathdisp {\sum_{n=1}^\infty { \frac{ 2n+5 }{ 4n^3-3n+2 } }} { }
konvergiert oder divergiert.

}
{} {}




\inputaufgabegibtloesung
{7}
{

Beweise das Folgenkriterium für die Stetigkeit einer Funktion \maabb {f} {\R} {\R } {} in einem Punkt
\mavergleichskette
{\vergleichskette
{ x }
{ \in }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}
{} {}




\inputaufgabegibtloesung
{4}
{

Berechne das Cauchy-Produkt bis zur vierten Potenz der geometrischen Reihe mit der Exponentialreihe.

}
{} {}




\inputaufgabegibtloesung
{2 (1+1)}
{

Wir betrachten die Funktion \maabbeledisp {f} {\R} {\R } {x} {f(x) = \ln \left( \sqrt{1+x^2} \right) } {.}

a) Bestimme die Ableitung $f'$.

b) Bestimme die zweite Ableitung $f^{\prime \prime}$.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Wir betrachten die Funktion \maabbeledisp {f} {\R} {\R } {x} {f(x) = x^2+1 } {.} Bestimme die Tangenten an $f$, die lineare Funktionen sind \zusatzklammer {die also durch den Nullpunkt verlaufen} {} {.}

}
{} {}




\inputaufgabegibtloesung
{5}
{

Wir betrachten die Funktion \maabbeledisp {f} {\R} {\R } {x} { \sqrt[3]{x^2} } {.} Bestimme die Punkte
\mavergleichskette
{\vergleichskette
{x }
{ \in }{\R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} in denen $f$ differenzierbar ist.

}
{} {}




\inputaufgabegibtloesung
{2}
{

Bestimme eine \definitionsverweis {Stammfunktion}{}{} für die \definitionsverweis {Funktion}{}{}
\mathdisp {4 \sin^{ 2 } t \cdot \cos t -5t^{11}} { . }

}
{} {}




\inputaufgabegibtloesung
{4}
{

Im $\R^3$ seien die beiden Untervektorräume
\mathdisp {U= { \left\{ s \begin{pmatrix} 2 \\1\\ 7 \end{pmatrix} + t \begin{pmatrix} 4 \\-2\\ 9 \end{pmatrix} \mid s,t \in \R \right\} }} { }
und
\mathdisp {V = { \left\{ p \begin{pmatrix} 3 \\1\\ 0 \end{pmatrix} + q \begin{pmatrix} 5 \\2\\ -4 \end{pmatrix} \mid p,q \in \R \right\} }} { }
gegeben. Bestimme eine Basis für
\mathl{U \cap V}{.}

}
{} {}




\inputaufgabegibtloesung
{4 (1+1+2)}
{

Die Zeitungen $A,B$ und $C$ verkaufen Zeitungsabos und konkurrieren dabei um einen lokalen Markt mit $100000$ potentiellen Lesern. Dabei sind innerhalb eines Jahres folgende Kundenbewegungen zu beobachten. \aufzaehlungvier{Die Abonnenten von $A$ bleiben zu $80\%$ bei $A$, $10\%$ wechseln zu $B$, $5 \%$ wechseln zu $C$ und $5 \%$ werden Nichtleser. }{Die Abonnenten von $B$ bleiben zu $60\%$ bei $B$, $10\%$ wechseln zu $A$, $20 \%$ wechseln zu $C$ und $10 \%$ werden Nichtleser. }{Die Abonnenten von $C$ bleiben zu $70\%$ bei $C$, niemand wechselt zu $A$, $10 \%$ wechseln zu $B$ und $20 \%$ werden Nichtleser. }{Von den Nichtlesern entscheiden sich je $10\%$ für ein Abonnement von
\mathl{A,B}{} oder $C$, die übrigen bleiben Nichtleser. }

a) Erstelle die Matrix, die die Kundenbewegungen innerhalb eines Jahres beschreibt.

b) In einem bestimmten Jahr haben alle drei Zeitungen je $20000$ Abonnenten und es gibt $40000$ Nichtleser. Wie sieht die Verteilung ein Jahr später aus?

c) Die drei Zeitungen expandieren in eine zweite Stadt, wo es bislang überhaupt keine Zeitungen gibt, aber ebenfalls $100 000$ potentielle Leser. Wie viele Leser haben dort die einzelnen Zeitungen \zusatzklammer {und wie viele Nichtleser gibt es noch} {} {} nach drei Jahren, wenn dort die gleichen Kundenbewegungen zu beobachten sind?

}
{} {}




\inputaufgabegibtloesung
{3}
{

Bestimme die \definitionsverweis {inverse Matrix}{}{} zu
\mathdisp {\begin{pmatrix} 1 & 3 & 0 \\ 5 & 2 & 1 \\0 & 0 & 2 \end{pmatrix}} { . }

}
{} {}




\inputaufgabegibtloesung
{4}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} und es sei $V$ ein $n$-\definitionsverweis {dimensionaler}{}{} \definitionsverweis {Vektorraum}{}{.} Es sei \maabbdisp {\varphi} {V} {V } {} eine \definitionsverweis {lineare Abbildung}{}{.} Zeige, dass
\mathl{\lambda \in K}{} genau dann ein \definitionsverweis {Eigenwert}{}{} von $\varphi$ ist, wenn $\lambda$ eine Nullstelle des \definitionsverweis {charakteristischen Polynoms}{}{}
\mathl{\chi_{ \varphi }}{} ist.

}
{} {}




\inputaufgabegibtloesung
{1}
{

Bestimme die \definitionsverweis {Eigenvektoren}{}{} der Funktion \maabbele {} {\R} { \R } {x} { \pi x } {.}

}
{} {}