Kurs:Mathematik für Anwender/Teil I/15/Klausur/latex

Aus Wikiversity

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{ . 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}

%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 4 }

\renewcommand{\avier}{ 5 }

\renewcommand{\afuenf}{ 2 }

\renewcommand{\asechs}{ 3 }

\renewcommand{\asieben}{ 3 }

\renewcommand{\aacht}{ 3 }

\renewcommand{\aneun}{ 10 }

\renewcommand{\azehn}{ 3 }

\renewcommand{\aelf}{ 5 }

\renewcommand{\azwoelf}{ 7 }

\renewcommand{\adreizehn}{ 4 }

\renewcommand{\avierzehn}{ 3 }

\renewcommand{\afuenfzehn}{ 6 }

\renewcommand{\asechzehn}{ 64 }

\renewcommand{\asiebzehn}{ }

\renewcommand{\aachtzehn}{ }

\renewcommand{\aneunzehn}{ }

\renewcommand{\azwanzig}{ }

\renewcommand{\aeinundzwanzig}{ }

\renewcommand{\azweiundzwanzig}{ }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabellefuenfzehn

\klausurnote

\newpage


\setcounter{section}{0}




\inputaufgabegibtloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Eine \stichwort {Abbildung} {} $F$ von einer Menge $L$ in eine Menge $M$.

}{Ein \stichwort {angeordneter} {} Körper.

}{Die \stichwort {reelle Exponentialfunktion} {.}

}{Der \stichwort {Differenzenquotient} {} zu einer Funktion \maabb {f} {\R} {\R } {} in einem Punkt
\mavergleichskette
{\vergleichskette
{a }
{ \in }{\R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}{Eine \stichwort {stetig differenzierbare} {} Funktion \maabb {f} { \R} { \R } {.}

}{Ein \stichwort {Vektorraum} {} $V$ über einem Körper $K$. }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Der \stichwort {Satz von Euklid} {} über Primzahlen.}{Der \stichwort {Mittelwertsatz der Differentialrechnung} {.}}{Der Satz über Basiswechsel bei einem Endomorphismus.}

}
{} {}




\inputaufgabegibtloesung
{4 (2+1+1)}
{

Folgende Aussagen seien bekannt. \aufzaehlungsieben{Der frühe Vogel fängt den Wurm. }{Doro wird nicht von Lilly gefangen. }{Lilly ist ein Vogel oder ein Igel. }{Für Igel ist 5 Uhr am Morgen spät. }{Doro ist ein Wurm. }{Für Vögel ist 5 Uhr am Morgen früh. }{Lilly schläft bis 5 Uhr am Morgen und ist ab 5 Uhr unterwegs. } Beantworte folgende Fragen. \aufzaehlungdrei{Ist Lilly ein Vogel oder ein Igel? }{Ist sie ein frühes oder ein spätes Tier? }{Fängt der späte Igel den Wurm? }

}
{} {}




\inputaufgabegibtloesung
{5}
{

Es seien zwei rationale Zahlen
\mavergleichskette
{\vergleichskette
{x }
{ < }{y }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gegeben. Zeige, dass für jede positive natürliche Zahl $n$ die rationale Zahl
\mavergleichskettedisp
{\vergleichskette
{z_n }
{ \defeq} { { \frac{ x+ny }{ 1+n } } }
{ } { }
{ } { }
{ } { }
} {}{}{} echt zwischen \mathkor {} {x} {und} {y} {} liegt. In welcher Größenbeziehung stehen die Zahlen $z_n$ zueinander?

}
{} {}




\inputaufgabegibtloesung
{2}
{

Beweise die Formel
\mavergleichskettedisp
{\vergleichskette
{ 2^n }
{ =} { \sum_{k = 0}^n \binom { n } { k } }
{ } { }
{ } { }
{ } { }
} {}{}{} mit Hilfe des allgemeinen binomischen Lehrsatzes.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Es sei ${ \left( x_n \right) }_{n \in \N }$ eine reelle Nullfolge und ${ \left( y_n \right) }_{n \in \N }$ eine beschränkte reelle Folge. Zeige, dass dann auch die Produktfolge $( x_n y_n)_{n \in \N}$ eine Nullfolge ist.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Bestimme die Schnittpunkte des Einheitskreises mit der durch
\mavergleichskettedisp
{\vergleichskette
{y }
{ =} {3x-2 }
{ } { }
{ } { }
{ } { }
} {}{}{} gegebenen Geraden.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Zeige, dass
\mavergleichskettedisp
{\vergleichskette
{z }
{ =} { \sqrt[3]{-1 + \sqrt{2} } + \sqrt[3]{-1 - \sqrt{2} } }
{ } { }
{ } { }
{ } { }
} {}{}{} eine Nullstelle des Polynoms
\mathdisp {X^3+3X+2} { }
ist.

}
{} {}




\inputaufgabegibtloesung
{10 (1+4+5)}
{

Wir betrachten die Quadratwurzelfunktion
\mavergleichskettedisp
{\vergleichskette
{f(x) }
{ \defeq} { \sqrt{x} }
{ } { }
{ } { }
{ } { }
} {}{}{} auf $\R_{\geq 0}$. \aufzaehlungdrei{Erstelle eine Wertetabelle für $f$ für die Stellen
\mavergleichskette
{\vergleichskette
{x }
{ = }{0,1,4,9 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Bestimme das Polynom
\mathl{p(x)}{} kleinsten Grades, das mit $f$ an den Stellen
\mavergleichskette
{\vergleichskette
{x }
{ = }{0,1,4 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} übereinstimmt. }{Bestimme die Schnittpunkte der Graphen zu $f$ und zu $p$ und die Intervalle, für die $f$ oberhalb bzw. unterhalb von $p$ verläuft. }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Es seien \maabbdisp {f,g} {[a,b]} {\R } {} \definitionsverweis {stetige Funktionen}{}{} mit
\mavergleichskette
{\vergleichskette
{f(a) }
{ \geq }{g(a) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{f(b) }
{ \leq }{g(b) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Zeige, dass es einen Punkt
\mavergleichskette
{\vergleichskette
{ c }
{ \in }{ [a,b] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{f(c) }
{ = }{g(c) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gibt.

}
{} {}




\inputaufgabegibtloesung
{5}
{

Beweise die Produktregel für differenzierbare Funktionen über die \definitionsverweis {Funktionslimiten}{}{} für die \definitionsverweis {Differenzenquotienten}{}{.}

}
{} {}




\inputaufgabegibtloesung
{7 (1+1+3+2)}
{

Wir betrachten die Funktion
\mavergleichskettedisp
{\vergleichskette
{f(x) }
{ =} { { \frac{ 1 }{ \sin x } } }
{ } { }
{ } { }
{ } { }
} {}{}{} im Reellen.

a) Bestimme den Definitionsbereich von $f$.

b) Skizziere $f$ für $x$ zwischen \mathkor {} {-2 \pi} {und} {2 \pi} {.}

c) Bestimme die ersten drei Ableitungen von $f$.

d) Bestimme das Taylor-Polynom der Ordnung $3$ von $f$ im Punkt ${ \frac{ \pi }{ 2 } }$.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} und
\mathdisp {\begin{matrix} a _{ 1 1 } x _1 + a _{ 1 2 } x _2 + \cdots + a _{ 1 n } x _{ n } & = & 0 \\ a _{ 2 1 } x _1 + a _{ 2 2 } x _2 + \cdots + a _{ 2 n } x _{ n } & = & 0 \\ \vdots & \vdots & \vdots \\ a _{ m 1 } x _1 + a _{ m 2 } x _2 + \cdots + a _{ m n } x _{ n } & = & 0 \end{matrix}} { }
ein homogenes \definitionsverweis {lineares Gleichungssystem}{}{} über $K$. Zeige, dass die Menge aller Lösungen des Gleichungssystems ein \definitionsverweis {Untervektorraum}{}{} des $K^n$ ist. Wie verhält sich dieser Lösungsraum zu den Lösungsräumen der einzelnen Gleichungen?

}
{} {}




\inputaufgabegibtloesung
{3}
{

Bestimme die inverse Matrix zur Matrix
\mathdisp {\begin{pmatrix} 1 & x \\ x^2 & { \frac{ x+1 }{ x^2 } } \end{pmatrix}} { }
über dem \definitionsverweis {Körper der rationalen Funktionen}{}{} $\R(X)$.

}
{} {}




\inputaufgabegibtloesung
{6 (2+3+1)}
{

Wir betrachten die lineare Abbildung \maabbdisp {\varphi} {{\mathbb C}^3} {{\mathbb C}^3 } {,} die bezüglich der Standardbasis durch die Matrix
\mavergleichskettedisp
{\vergleichskette
{A }
{ =} { \begin{pmatrix} 2 & 1 & -2+ { \mathrm i} \\ 0 & { \mathrm i} & 1+ { \mathrm i} \\0 & 0 & -1+2 { \mathrm i} \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{} beschrieben wird.

a) Bestimme das charakteristische Polynom und die Eigenwerte von $A$.

b) Berechne zu jedem Eigenwert einen Eigenvektor.

c) Stelle die Matrix für $\varphi$ bezüglich einer Basis aus Eigenvektoren auf.

}
{} {}