Kurs:Mathematik für Anwender/Teil I/26/Klausur/latex

Aus Wikiversity

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{ . 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}


%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 4 }

\renewcommand{\avier}{ 1 }

\renewcommand{\afuenf}{ 2 }

\renewcommand{\asechs}{ 5 }

\renewcommand{\asieben}{ 4 }

\renewcommand{\aacht}{ 3 }

\renewcommand{\aneun}{ 2 }

\renewcommand{\azehn}{ 4 }

\renewcommand{\aelf}{ 7 }

\renewcommand{\azwoelf}{ 3 }

\renewcommand{\adreizehn}{ 4 }

\renewcommand{\avierzehn}{ 1 }

\renewcommand{\afuenfzehn}{ 4 }

\renewcommand{\asechzehn}{ 6 }

\renewcommand{\asiebzehn}{ 4 }

\renewcommand{\aachtzehn}{ 1 }

\renewcommand{\aneunzehn}{ 3 }

\renewcommand{\azwanzig}{ 64 }

\renewcommand{\aeinundzwanzig}{ }

\renewcommand{\azweiundzwanzig}{ }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabelleneunzehn


\klausurnote

\newpage


\setcounter{section}{0}




\inputaufgabegibtloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Eine \stichwort {surjektive} {} Abbildung \maabbdisp {f} {L} {M } {.}

}{Der \stichwort {Körper der komplexen Zahlen} {} \zusatzklammer {mit den Verknüpfungen} {} {.}

}{Der \stichwort {Grad} {} eines Polynoms
\mathbed {P \in K[X]} {}
{P \neq 0} {}
{} {} {} {,} über einem Körper $K$.

}{Die \stichwort {Stetigkeit} {} einer Funktion \maabbdisp {f} {\R} {\R } {} in einem Punkt
\mathl{x \in \R}{.}

}{Die \stichwort {Differenzierbarkeit} {} einer \definitionsverweis {Abbildung}{}{} \maabbdisp {f} {\R} {\R } {} in einem Punkt
\mavergleichskette
{\vergleichskette
{ a }
{ \in }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}{Die \stichwort {Determinante} {} eines Endomorphismus \maabbdisp {\varphi} {V} {V } {} auf einem endlichdimensionalen Vektorraum $V$. }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Der Satz über die algebraische Struktur der komplexen Zahlen.}{Die wichtigsten Eigenschaften des natürlichen Logarithmus.}{Der Satz über die mathematische Struktur der Lösungsmenge eines homogenen linearen Gleichungssystems.}

}
{} {}




\inputaufgabe
{4 (1+3)}
{

In einer Höhle befinden sich im Innern am Ende des Ganges vier Personen. Sie haben eine Taschenlampe bei sich und der Gang kann nur mit der Taschenlampe begangen werden. Dabei können höchstens zwei Leute gemeinsam durch den Gang gehen. Die Personen sind unterschiedlich geschickt, die erste Person benötigt eine Stunde, die zweite Person benötigt zwei Stunden, die dritte Person benötigt vier Stunden und die vierte Person benötigt fünf Stunden, um den Gang zu durchlaufen. Wenn zwei Personen gleichzeitig gehen, entscheidet die langsamere Person über die Geschwindigkeit. \aufzaehlungzwei {Die Batterie für die Taschenlampe reicht für genau $13$ Stunden. Können alle vier die Höhle verlassen? } {Die Batterie für die Taschenlampe reicht für genau $12$ Stunden. Können alle vier die Höhle verlassen? }

}
{} {}




\inputaufgabegibtloesung
{1}
{

Professor Knopfloch ist soeben aufgestanden und noch etwas schläfrig. Er setzt sich seine zwei Kontaklinsen in seine Augen. Beim Frühstück stellt er fest, dass in seinem linken Auge keine Kontaktlinse ist. Er ist sich sicher, dass keine Kontaktlinse verloren ging, jede Kontaklinse landete in einem seiner Augen. Ist die Abbildung, die die Zuordnung an diesem Morgen der Kontaktlinsen zu den Augen beschreibt, surjektiv, injektiv, bijektiv?

}
{} {}




\inputaufgabegibtloesung
{2}
{

Ein Apfelverkäufer verkauft
\mathl{2893}{} Äpfel für $3127$ Euro. Ein zweiter Apfelverkäufer verkauft $3417$ Äpfel für
\mathl{3693}{} Euro. Welches Angebot ist günstiger?

}
{} {}




\inputaufgabegibtloesung
{5 (1+1+1+1+1)}
{

Beweise die folgenden Aussagen zu \definitionsverweis {Real}{}{-} und \definitionsverweis {Imaginärteil}{}{} von \definitionsverweis {komplexen Zahlen}{}{.} \aufzaehlungfuenf{Es ist
\mavergleichskette
{\vergleichskette
{ z }
{ = }{ \operatorname{Re} \, { \left( z \right) } + \operatorname{Im} \, { \left( z \right) } { \mathrm i} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Es ist
\mavergleichskette
{\vergleichskette
{ \operatorname{Re} \, { \left( z+w \right) } }
{ = }{ \operatorname{Re} \, { \left( z \right) } + \operatorname{Re} \, { \left( w \right) } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Es ist
\mavergleichskette
{\vergleichskette
{ \operatorname{Im} \, { \left( z+w \right) } }
{ = }{ \operatorname{Im} \, { \left( z \right) } + \operatorname{Im} \, { \left( w \right) } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Für
\mavergleichskette
{\vergleichskette
{r }
{ \in }{\R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist
\mathdisp {\operatorname{Re} \, { \left( rz \right) } =r \operatorname{Re} \, { \left( z \right) } \text{ und } \operatorname{Im} \, { \left( rz \right) } =r \operatorname{Im} \, { \left( z \right) }} { . }
}{Es ist
\mavergleichskette
{\vergleichskette
{ z }
{ = }{ \operatorname{Re} \, { \left( z \right) } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} genau dann, wenn
\mavergleichskette
{\vergleichskette
{z }
{ \in }{\R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist, und dies ist genau dann der Fall, wenn
\mavergleichskette
{\vergleichskette
{ \operatorname{Im} \, { \left( z \right) } }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist. }

}
{} {}




\inputaufgabegibtloesung
{4}
{

Beweise durch Induktion für alle
\mavergleichskette
{\vergleichskette
{ n }
{ \in }{ \N_+ }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die Formel
\mavergleichskettedisp
{\vergleichskette
{ \sum_{k = 1}^n (-1)^{k-1} k^2 }
{ =} { (-1)^{n+1} { \frac{ n(n+1) }{ 2 } } }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabegibtloesung
{3}
{

Zeige, dass die \definitionsverweis {Reihe}{}{}
\mathdisp {\sum_{n=1}^\infty { \frac{ \sin n }{ n^2 } }} { }
\definitionsverweis {konvergiert}{}{.}

}
{} {}




\inputaufgabe
{2}
{

Zeige, dass eine \definitionsverweis {streng wachsende Funktion}{}{} \maabbdisp {f} {\R} {\R } {} \definitionsverweis {injektiv}{}{} ist.

}
{} {}




\inputaufgabegibtloesung
{4 (1+3)}
{

\aufzaehlungzwei {Skizziere die Graphen der Funktionen \maabbeledisp {f} {\R_+} { \R } {x} {x-1 } {,} und \maabbeledisp {g} {\R_+} { \R } {x} { { \frac{ 1 }{ x } } } {,} } {Bestimme die Schnittpunkte der beiden Graphen. }

}
{} {}




\inputaufgabegibtloesung
{7}
{

Betrachte die Funktion
\mavergleichskettedisp
{\vergleichskette
{F(x) }
{ =} {x^4-x^3 }
{ } { }
{ } { }
{ } { }
} {}{}{.} Finde
\mavergleichskette
{\vergleichskette
{ a,b,c,d }
{ \in }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} derart, dass
\mavergleichskettedisp
{\vergleichskette
{x^4-x^3 }
{ =} { (x-a)^2(x-b)^2+cx+d }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt.

}
{} {}




\inputaufgabe
{3}
{

Man erläutere den Unterschied zwischen dem Produkt und der Hintereinanderschaltung von zwei Funktionen \maabbdisp {f,g} {\R} { \R } {} anhand typischer Beispiele. Wir ordnet sich die Kettenregel in diesen Fragekomplex ein?

}
{} {}




\inputaufgabegibtloesung
{4}
{

Beweise den Satz von Rolle.

}
{} {}




\inputaufgabegibtloesung
{1}
{

Bestimme die Ableitung von
\mavergleichskettedisp
{\vergleichskette
{f(x) }
{ =} {x \ln x }
{ } { }
{ } { }
{ } { }
} {}{}{} auf $\R_+$.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Bestimme den Flächeninhalt zwischen den Graphen der Exponentialfunktion und der Kosinusfunktion auf dem Intervall
\mathl{[0, \pi/2]}{.} Skizziere die Situation.

}
{} {}




\inputaufgabegibtloesung
{6}
{

Bestimme explizit die \definitionsverweis {reellen}{}{} $2 \times 2$-\definitionsverweis {Matrizen}{}{} der Form
\mavergleichskettedisp
{\vergleichskette
{M }
{ =} { \begin{pmatrix} a & b \\ c & d \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{} mit
\mavergleichskettedisp
{\vergleichskette
{M^2 }
{ =} {0 }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabegibtloesung
{4}
{






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Linalg_parallelogram_area.png} }
\end{center}
\bildtext {} }

\bildlizenz { Linalg parallelogram area.png } {Nicholas Longo} {Thenub314} {Commons} {CC-by-sa 2.5} {}

Man begründe anhand des Bildes, dass zu zwei Vektoren \mathkor {} {(x_1,y_1)} {und} {(x_2,y_2)} {} die \definitionsverweis {Determinante}{}{} der durch die Vektoren definierten $2\times 2$-Matrix mit dem Flächeninhalt des von den beiden Vektoren aufgespannten \stichwort {Parallelogramms} {} \zusatzklammer {bis auf das Vorzeichen} {} {} übereinstimmt.




$\,$

}
{} {}




\inputaufgabegibtloesung
{1}
{

Bestimme, abhängig von
\mathl{a,b,c,d}{,} den \definitionsverweis {Rang}{}{} der Matrix
\mathdisp {\begin{pmatrix} a & 4b & a-c & d \\ 0 & b & b^2 & b^3 \\ 0 & 0 & c^2 & a^2 \\ 0 & 0 & 0 & d \end{pmatrix}} { . }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Bestimme, ob die reelle Matrix
\mathdisp {\begin{pmatrix} 9 & 3 & 0 \\ -5 & -1 & 0 \\0 & 0 & 13 \end{pmatrix}} { }
\definitionsverweis {trigonalisierbar}{}{} und ob sie \definitionsverweis {diagonalisierbar}{}{} ist.

}
{} {}