Kurs:Mathematik für Anwender/Teil I/29/Klausur/latex

Aus Wikiversity

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{ . 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}


%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 1 }

\renewcommand{\avier}{ 1 }

\renewcommand{\afuenf}{ 6 }

\renewcommand{\asechs}{ 2 }

\renewcommand{\asieben}{ 2 }

\renewcommand{\aacht}{ 3 }

\renewcommand{\aneun}{ 3 }

\renewcommand{\azehn}{ 2 }

\renewcommand{\aelf}{ 4 }

\renewcommand{\azwoelf}{ 5 }

\renewcommand{\adreizehn}{ 2 }

\renewcommand{\avierzehn}{ 4 }

\renewcommand{\afuenfzehn}{ 6 }

\renewcommand{\asechzehn}{ 5 }

\renewcommand{\asiebzehn}{ 2 }

\renewcommand{\aachtzehn}{ 2 }

\renewcommand{\aneunzehn}{ 2 }

\renewcommand{\azwanzig}{ 6 }

\renewcommand{\aeinundzwanzig}{ 64 }

\renewcommand{\azweiundzwanzig}{ }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabellezwanzig


\klausurnote

\newpage


\setcounter{section}{0}




\inputaufgabegibtloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Der \stichwort {Binomialkoeffizient} {}
\mathl{\binom { n } { k }}{.}

}{Eine \stichwort {Teilfolge} {} einer Folge reeller Zahlen.

}{Eine \stichwort {gerade} {} Funktion \maabb {f} {\R} { \R } {.}

}{Eine \stichwort {Stammfunktion} {} zu einer Funktion \maabb {f} {]a,b[} {\R } {.}

}{Ein \stichwort {inhomogenes lineares Gleichungssystem} {} mit $m$ Gleichungen in $n$ Variablen über einem Körper $K$.

}{Der \stichwort {Kern} {} einer linearen Abbildung \maabbdisp {\varphi} {V} {W } {} zwischen zwei $K$-Vektorräumen \mathkor {} {V} {und} {W} {.} }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Das \stichwort {Leibnizkriterium für alternierende Reihen} {.}}{Der Satz über Ableitung und Wachstumsverhalten einer Funktion \maabb {f} {\R} {\R } {.}}{Der Satz über die Lösungsmenge zu einem linearen Gleichungssystem in Dreiecksgestalt über einem Körper $K$.}

}
{} {}




\inputaufgabe
{1}
{






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Gartentoreverbindung.png} }
\end{center}
\bildtext {} }

\bildlizenz { Gartentoreverbindung.png } {} {Bocardodarapti} {Commons} {CC-by-sa 4.0} {}

Lege in der Skizze für die drei Häuser überschneidungsfrei Wege zu den zugehörigen gleichfarbigen Gartentoren an.

}
{} {}




\inputaufgabegibtloesung
{1}
{

Finde einen möglichst einfachen aussagenlogischen Ausdruck, der die folgende tabellarisch dargestellte Wahrheitsfunktion ergibt. \wahrheitstabellezweieins{ } {\tabellenzeiledrei {$ p $} {$ q $} {$? $} } {\tabellenzeiledrei {w} {w} {w} } {\tabellenzeiledrei {w} {f} {f} } {\tabellenzeiledrei {f} {w} {w} } {\tabellenzeiledrei {f} {f} {f} }

}
{} {}




\inputaufgabegibtloesung
{6 (2+2+1+1)}
{

Wir betrachten die beiden Sätze \anfuehrung{Für jeden Topf gibt es einen Deckel}{} und \anfuehrung{Es gibt einen Deckel für jeden Topf}{,} die man im alltäglichen Verständnis wohl als gleichbedeutend ansehen würde. Wenn man aber die beiden Aussagen streng prädikatenlogisch \zusatzklammer {quantorenlogisch} {} {} von vorne nach hinten abarbeitet, so ergeben sich zwei unterschiedliche Bedeutungen. \aufzaehlungvier{Formuliere die beiden Aussagen durch zusätzliche Wörter so um, dass die unterschiedlichen Bedeutungen deutlich hervortreten. }{Es sei $T$ die Menge der Töpfe und $D$ die Menge der Deckel. Es sei
\mathl{P}{} ein zweistelliges Prädikat derart, dass \zusatzklammer {für
\mavergleichskette
{\vergleichskette
{ x }
{ \in }{ T }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{ y }
{ \in }{ D }
{ }{ }
{ }{ }
{ }{ }
} {}{}{}} {} {}
\mathl{P(x,y)}{} besagt, dass $y$ auf $x$ passt. Formuliere die beiden Aussagen allein mit geeigneten mathematischen Symbolen. }{Kann man aus der Aussage, dass es für jeden Topf einen Deckel gibt, logisch erschließen, dass es für jeden Deckel einen Topf gibt? }{Wie kann man erklären, dass die beiden Aussagen im alltäglichen Verständnis als gleichbedeutend interpretiert werden? }

}
{} {}




\inputaufgabegibtloesung
{2}
{

Es seien
\mathl{L,M,N}{} Mengen und \maabb {F} {L} {M } {} und \maabb {G} {M} {N } {} \definitionsverweis {surjektive Abbildungen}{}{.} Zeige, dass die \definitionsverweis {Hintereinanderschaltung}{}{}
\mathl{G \circ F}{} ebenfalls surjektiv ist.

}
{} {}




\inputaufgabegibtloesung
{2 (1+1)}
{

Person $A$ wird $80$ Jahre alt und Person $B$ wird $70$ Jahre alt. Vergleiche die Gesamtlebenswachzeit und die Gesamtlebensschlafzeit der beiden Personen bei folgendem Schlafverhalten. \aufzaehlungzwei {$A$ schläft jede Nacht $7$ Stunden und $B$ schläft jede Nacht $8$ Stunden. } {$A$ schläft jede Nacht $8$ Stunden und $B$ schläft jede Nacht $7$ Stunden. }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$. Es sei
\mathl{a \in K}{.} Zeige, dass die Einsetzungsabbildung, also die Zuordnung \maabbeledisp {\psi} {K[X]} {K } {P} {P(a) } {,} folgende Eigenschaften erfüllt \zusatzklammer {dabei seien \mathlk{P,Q \in K[X]}{}} {} {.} \aufzaehlungdrei{$(P + Q)(a)=P(a) +Q(a)$. }{$(P \cdot Q)(a)=P(a) \cdot Q(a)$. }{$1(a)=1$. }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Entscheide, ob die \definitionsverweis {reelle Folge}{}{}
\mavergleichskettedisp
{\vergleichskette
{ x_n }
{ =} { { \frac{ 3 n^{ \frac{ 5 }{ 4 } } -2 n^{ \frac{ 4 }{ 3 } } + n }{ 4n^{ \frac{ 7 }{ 5 } } +5 n^{ \frac{ 1 }{ 2 } } +1 } } }
{ } { }
{ } { }
{ } { }
} {}{}{} \zusatzklammer {mit
\mavergleichskette
{\vergleichskette
{ n }
{ \geq }{ 1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{}} {} {} in $\R$ \definitionsverweis {konvergiert}{}{} und bestimme gegebenenfalls den \definitionsverweis {Grenzwert}{}{.}

}
{} {}




\inputaufgabegibtloesung
{2}
{

Entscheide, ob die Reihe
\mathdisp {\sum_{n=1}^\infty { \frac{ n! }{ n^n } }} { }
konvergiert.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Finde für die Funktion \maabbeledisp {f} {\R} {\R } {x} {f(x) = x^3 -3x+1 } {,} eine \definitionsverweis {Nullstelle}{}{} im \definitionsverweis {Intervall}{}{} $[-2,-1]$ mit Hilfe der Intervallhalbierungsmethode mit einem Fehler von maximal $1/8$.

}
{} {}




\inputaufgabegibtloesung
{5}
{

Beweise den Satz über die lineare Approximierbarkeit.

}
{} {}




\inputaufgabegibtloesung
{2}
{

Beweise den Satz über die Ableitung der Exponentialfunktionen zu einer Basis
\mavergleichskette
{\vergleichskette
{a }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}
{} {}




\inputaufgabegibtloesung
{4}
{

Bestimme den Grenzwert von
\mathdisp {\frac{x^2-3x+2}{x^3-2x+1}} { }
im Punkt $1$, und zwar

a) mittels Polynomdivision,

b) mittels der Regel von l'Hospital.

}
{} {}




\inputaufgabegibtloesung
{6}
{

Es sei \maabb {f} { \R} { \R } {} eine $n$-fach \definitionsverweis {stetig differenzierbare}{}{} Funktion mit der Eigenschaft, dass die $n$-te Ableitung überall positiv ist. Zeige, dass $f$ maximal $n$ Nullstellen besitzt.

}
{} {}




\inputaufgabegibtloesung
{5 (2+3)}
{

Wir betrachten die Standardparabel, also den Graphen zur Funktion
\mavergleichskettedisp
{\vergleichskette
{f(x) }
{ =} {x^2 }
{ } { }
{ } { }
{ } { }
} {}{}{.} \aufzaehlungzwei {Für welche reelle Zahl
\mavergleichskette
{\vergleichskette
{c }
{ \geq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist der Flächeninhalt der durch die $x$-Achse, die Parabel und die durch
\mavergleichskette
{\vergleichskette
{x }
{ = }{c }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} bestimmte vertikale Gerade eingeschränkte Fläche gleich $17$? Skizziere die Situation. } {Für welche reelle Zahl
\mavergleichskette
{\vergleichskette
{d }
{ \geq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist der Flächeninhalt der durch die Parabel und die durch
\mavergleichskette
{\vergleichskette
{y }
{ = }{d }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} bestimmte horizontale Gerade eingeschränkte Fläche gleich $13$? Skizziere die Situation. }

}
{} {}




\inputaufgabegibtloesung
{2}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} und seien $U,V,W$ \definitionsverweis {Vektorräume}{}{} über $K$. Es seien
\mathdisp {\varphi \colon U\rightarrow V \text{ und } \psi \colon V\rightarrow W} { }
\definitionsverweis {lineare Abbildungen}{}{.} Zeige, dass dann auch die \definitionsverweis {Verknüpfung}{}{} \maabbdisp {\psi \circ \varphi} { U} {W } {} eine lineare Abbildung ist.

}
{} {}




\inputaufgabegibtloesung
{2}
{

Bestimme, ob die beiden Matrizen
\mathdisp {M = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \text{ und } N= \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}} { }
zueinander \definitionsverweis {ähnlich}{}{} sind.

}
{} {}




\inputaufgabegibtloesung
{2}
{

Bestimme die \definitionsverweis {inverse Matrix}{}{} von
\mathdisp {\begin{pmatrix} 3 { \frac{ 1 }{ 4 } } & 0 & 0 & 0 \\ 0 & { \frac{ 1 }{ 5 } } & 0 & 0 \\ 0 & 0 & 2 { \frac{ 2 }{ 7 } } & 0 \\ 0 & 0 & 0 & { \frac{ 3 }{ 11 } } \end{pmatrix}} { , }
die Angaben sind dabei als gemischte Brüche zu verstehen und das Ergebnis soll ebenso angegeben werden.

}
{} {}




\inputaufgabegibtloesung
{6}
{

Es sei $M$ eine $n \times n$-\definitionsverweis {Matrix}{}{,} mit dem \definitionsverweis {charakteristischen Polynom}{}{}
\mavergleichskettedisp
{\vergleichskette
{ \chi_{ M } }
{ =} {X^n + c_{n-1}X^{n-1}+c_{n-2}X^{n-2} + \cdots + c_2X^2+c_1X+c_0 }
{ } { }
{ } { }
{ } { }
} {}{}{.} Bestimme das charakteristische Polynom der mit
\mathl{s \in K}{} gestreckten Matrix
\mathl{sM}{.}

}
{} {}