Kurs:Mathematik für Anwender/Teil I/30/Klausur/latex

Aus Wikiversity

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{ . 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}


%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 2 }

\renewcommand{\avier}{ 2 }

\renewcommand{\afuenf}{ 2 }

\renewcommand{\asechs}{ 4 }

\renewcommand{\asieben}{ 5 }

\renewcommand{\aacht}{ 4 }

\renewcommand{\aneun}{ 5 }

\renewcommand{\azehn}{ 6 }

\renewcommand{\aelf}{ 3 }

\renewcommand{\azwoelf}{ 2 }

\renewcommand{\adreizehn}{ 4 }

\renewcommand{\avierzehn}{ 7 }

\renewcommand{\afuenfzehn}{ 3 }

\renewcommand{\asechzehn}{ 1 }

\renewcommand{\asiebzehn}{ 2 }

\renewcommand{\aachtzehn}{ 2 }

\renewcommand{\aneunzehn}{ 4 }

\renewcommand{\azwanzig}{ 64 }

\renewcommand{\aeinundzwanzig}{ }

\renewcommand{\azweiundzwanzig}{ }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabelleneunzehn


\klausurnote

\newpage


\setcounter{section}{0}




\inputaufgabegibtloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Die \stichwort {Vereinigung} {} der Mengen \mathkor {} {L} {und} {M} {.}

}{Eine \stichwort {beschränkte} {} Teilmenge von reellen Zahlen.

}{Eine \stichwort {fallende} {} reelle Folge.

}{Die \stichwort {eulersche Zahl} {} $e$.

}{Der \stichwort {Spaltenrang} {} einer $m \times n$-\definitionsverweis {Matrix}{}{} $M$ über einem Körper $K$.

}{Der \stichwort {Eigenraum} {} zu $\lambda \in K$ und einem \definitionsverweis {Endomorphismus}{}{} \maabbdisp {\varphi} {V} {V } {} auf einem $K$-\definitionsverweis {Vektorraum}{}{} $V$. }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Der \stichwort {Zwischenwertsatz} {.}}{Die \stichwort {Funktionalgleichung} {} der Exponentialfunktion.}{Der Satz über die Transformation eines linearen Gleichungssystems in Dreiecksgestalt.}

}
{} {}




\inputaufgabegibtloesung
{2}
{

Negiere den Satz \anfuehrung{Kein Schwein ruft mich an und keine Sau interessiert sich für mich}{} durch (eine) geeignete Existenzaussage(n).

}
{} {}




\inputaufgabegibtloesung
{2}
{

Es seien $A,\, B$ und $C$ Mengen. Beweise die Identität
\mavergleichskettedisp
{\vergleichskette
{A \setminus { \left( B \cap C \right) } }
{ =} { { \left( A \setminus B \right) } \cup { \left( A \setminus C \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabegibtloesung
{2}
{

Wenn man alles Gold der Welt zusammennimmt, so erhält man einen Würfel, dessen Seitenlänge
\mathl{21,7}{} Meter beträgt. Wenn man alles Gold von Deutschland zusammennimmt, so erhält man einen Würfel, dessen Seitenlänge
\mathl{8,6}{} Meter beträgt. Wie viel Prozent des weltweiten Goldes besitzt Deutschland?

}
{} {}




\inputaufgabegibtloesung
{4}
{

Betrachte die Abbildung \maabbeledisp {f} {\N} {\Z } {n} {\begin{cases} -\frac{n}{2}, \text{ falls } n \text{ gerade} \, ,\\ \frac{n+1}{2}, \text{ falls } n \text{ ungerade} \, . \end{cases} } {} Ist $f$ injektiv, surjektiv bzw. bijektiv?

}
{} {}




\inputaufgabegibtloesung
{5}
{

Es seien
\mavergleichskette
{\vergleichskette
{x }
{ \geq }{2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{s }
{ > }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \definitionsverweis {reelle Zahlen}{}{.} Zeige
\mavergleichskettedisp
{\vergleichskette
{1+x^{-s} }
{ <} { { \frac{ 1 }{ 1-x^{-s} } } }
{ \leq} {1 + 2x^{-s} }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabegibtloesung
{4}
{

Es stehen zwei Gläser auf einem Tisch, wobei das eine mit Rotwein und das andere mit Weißwein gefüllt ist, und zwar gleichermaßen. Nun wird ein kleineres leeres Glas \zusatzklammer {ein Fingerhut oder ein Schnapsglas} {} {} in das Rotweinglas voll eingetaucht und der Inhalt in das Weißweinglas überführt und dort gleichmäßig vermischt \zusatzklammer {insbesondere gibt es Platz für diese Hinzugabe} {} {.} Danach wird das kleinere Glas in das Weißweinglas voll eingetaucht und der Inhalt in das Rotweinglas überführt. Befindet sich zum Schluss im Rotweinglas mehr Rotwein als im Weißweinglas Weißwein?

}
{} {}




\inputaufgabegibtloesung
{5}
{

Zeige, dass die \definitionsverweis {komplexen Zahlen}{}{} einen \definitionsverweis {Körper}{}{} bilden.

}
{} {}




\inputaufgabegibtloesung
{6}
{

Es sei $K$ ein Körper und es seien $n$ verschiedene Elemente $a_1 , \ldots , a_n \in K$ und $n$ Elemente $b_1 , \ldots , b_n \in K$ gegeben. Zeige, dass es ein eindeutiges Polynom
\mathl{P \in K[X]}{} vom Grad $\leq n-1$ derart gibt, dass
\mavergleichskette
{\vergleichskette
{ P(a_i) }
{ = }{ b_i }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für alle $i$ ist.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Berechne von Hand die Approximationen $x_1,x_2,x_3$ im Heron-Verfahren für die Quadratwurzel von $5$ zum Startwert $x_0=3$.

}
{} {}




\inputaufgabegibtloesung
{2}
{

Man gebe ein Beispiel für eine Folge von abgeschlossenen Intervallen \zusatzklammer {
\mavergleichskette
{\vergleichskette
{ n }
{ \in }{ \N_+ }
{ }{ }
{ }{ }
{ }{ }
} {}{}{}} {} {}
\mavergleichskettedisp
{\vergleichskette
{I_n }
{ =} {[a_n,b_n] }
{ \subseteq} {\R }
{ } { }
{ } { }
} {}{}{} derart an, dass
\mathl{b_n-a_n}{} eine Nullfolge ist, dass
\mathl{\bigcap_{n\in \N_+} I_n}{} aus einem einzigen Punkt besteht, wo aber keine \definitionsverweis {Intervallschachtelung}{}{} vorliegt.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Beweise die Regel von l'Hospital.

}
{} {}




\inputaufgabegibtloesung
{7 (1+1+3+1+1)}
{

Wir betrachten die Funktion \maabbeledisp {f} {\R_{\geq 0}} {\R_{\geq 0} } {x} { x^{-1} } {.} \aufzaehlungfuenf{Berechne die erste Ableitung von $f$. }{Berechne die zweite Ableitung von $f$. }{Erstelle \zusatzklammer {und beweise} {} {} eine Formel für die $n$-te Ableitung von $f$ \zusatzklammer {
\mavergleichskette
{\vergleichskette
{n }
{ \geq }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{}} {} {.} }{Bestimme das \definitionsverweis {Taylorpolynom}{}{} zu $f$ im Punkt $1$ vom Grad $4$. }{Bestimme die Taylorreihe zu $f$ im Punkt $1$. }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Berechne das \definitionsverweis {bestimmte Integral}{}{}
\mathdisp {\int_{ 2 }^{ 5 } { \frac{ x }{ x+1 } } \, d x} { }

}
{} {}




\inputaufgabegibtloesung
{1}
{

Bei einem linearen Gleichungssystem führe das Eliminationsverfahren auf die Gleichung
\mavergleichskettedisp
{\vergleichskette
{0 }
{ =} {1 }
{ } { }
{ } { }
{ } { }
} {}{}{.} Welche Folgerung kann man daraus schließen?

}
{} {}




\inputaufgabegibtloesung
{2}
{

Gilt für quadratische Matrizen die erste binomische Formel?

}
{} {}




\inputaufgabegibtloesung
{2}
{

Berechne die \definitionsverweis {Determinante}{}{} der \definitionsverweis {Matrix}{}{}
\mathdisp {\begin{pmatrix} 0 & 3-4 { \mathrm i} & 2 { \mathrm i} \\ 2- 3 { \mathrm i} & 4+7 { \mathrm i} & 3- { \mathrm i} \\ 0 & 1-5 { \mathrm i} & -4- { \mathrm i} \end{pmatrix}} { . }

}
{} {}




\inputaufgabegibtloesung
{4}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} und es sei $V$ ein $n$-\definitionsverweis {dimensionaler}{}{} \definitionsverweis {Vektorraum}{}{.} Es sei \maabbdisp {\varphi} {V} {V } {} eine \definitionsverweis {lineare Abbildung}{}{.} Zeige, dass
\mathl{\lambda \in K}{} genau dann ein \definitionsverweis {Eigenwert}{}{} von $\varphi$ ist, wenn $\lambda$ eine Nullstelle des \definitionsverweis {charakteristischen Polynoms}{}{}
\mathl{\chi_{ \varphi }}{} ist.

}
{} {}