Kurs:Mathematik für Anwender/Teil I/36/Klausur/latex

Aus Wikiversity

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{ . 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}


%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 3 }

\renewcommand{\avier}{ 2 }

\renewcommand{\afuenf}{ 3 }

\renewcommand{\asechs}{ 4 }

\renewcommand{\asieben}{ 6 }

\renewcommand{\aacht}{ 3 }

\renewcommand{\aneun}{ 4 }

\renewcommand{\azehn}{ 2 }

\renewcommand{\aelf}{ 6 }

\renewcommand{\azwoelf}{ 4 }

\renewcommand{\adreizehn}{ 4 }

\renewcommand{\avierzehn}{ 3 }

\renewcommand{\afuenfzehn}{ 3 }

\renewcommand{\asechzehn}{ 5 }

\renewcommand{\asiebzehn}{ 2 }

\renewcommand{\aachtzehn}{ 4 }

\renewcommand{\aneunzehn}{ 64 }

\renewcommand{\azwanzig}{ }

\renewcommand{\aeinundzwanzig}{ }

\renewcommand{\azweiundzwanzig}{ }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabelleachtzehn


\klausurnote

\newpage


\setcounter{section}{0}




\inputaufgabegibtloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Die \stichwort {Produktmenge} {} aus zwei Mengen $L$ und $M$.

}{Die \stichwort {komplexe Konjugation} {.}

}{Die \stichwort {Konvergenz} {} einer reellen Folge
\mathl{{ \left( x_n \right) }_{n \in \N }}{} gegen $x$.

}{Ein \stichwort {isoliertes} {} lokales Minimum einer Funktion \maabb {f} {\R} {\R } {.}

}{Der \stichwort {Arkussinus} {.}

}{Ein \stichwort {inhomogenes lineares Gleichungssystem} {} mit $m$ Gleichungen in $n$ Variablen über einem Körper $K$. }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Der \stichwort {Satz über die Anzahl von Nullstellen eines Polynoms} {} über einem Körper $K$.}{Die \stichwort {Regel von l'Hospital} {.}}{Der Satz über die Multilinearität der Determinante \zusatzklammer {mit Erläuterung} {} {.}}

}
{} {}




\inputaufgabe
{3}
{

In Beweisen findet man häufig die Formulierung \anfuehrung{Wir nehmen (jetzt, also) an}{.} Welche Bedeutungen im Beweis kann diese Formulierung haben?

}
{} {}




\inputaufgabegibtloesung
{2 (0.5+0.5+0.5+0.5)}
{

Wir betrachten die Wertetabelle \wertetabelleachtausteilzeilen { $i$ }
{\mazeileundfuenf {1} {2} {3} {4} {5} }
{\mazeileunddrei {6} {7} {8} }
{ $a_i$ }
{\mazeileundfuenf {2} {5} {4} {-1} {3} }
{\mazeileunddrei {5} {-2} {2} } \aufzaehlungvier{Berechne
\mathl{a_2+a_5}{.} }{Berechne
\mathl{\sum_{k = 3}^6 a_k}{.} }{Berechne
\mathl{\prod_{i = 0}^3 a_{2i+1}}{.} }{Berechne
\mathl{\sum_{i = 4}^5 a^2_{i}}{.} }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Zeige durch Induktion, dass jede natürliche Zahl
\mavergleichskette
{\vergleichskette
{n }
{ \geq }{2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine Zerlegung in \definitionsverweis {Primzahlen}{}{} besitzt.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Beweise
\mavergleichskettedisp
{\vergleichskette
{\sum_{ i = 0}^ {n} (-1)^{i} \binom { n } { i } 2^i }
{ =} { (-1)^n }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabegibtloesung
{6}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$ und sei $P \in K[X]$ ein Polynom, das eine Zerlegung in Linearfaktoren besitze. Es sei $T$ ein \definitionsverweis {Teiler}{}{} von $P$. Zeige, dass $T$ ebenfalls eine Zerlegung in Linearfaktoren besitzt, wobei die Vielfachheit eines Linearfaktors
\mathl{X-a}{} in $T$ durch seine Vielfachheit in $P$ beschränkt ist.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Es sei $K$ ein \definitionsverweis {angeordneter Körper}{}{} und seien
\mavergleichskette
{\vergleichskette
{a }
{ > }{b }
{ > }{0 }
{ }{ }
{ }{ }
} {}{}{} Elemente aus $K$. Zeige
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ 1 }{ a-b } } + { \frac{ 1 }{ a+b } } }
{ \geq} { { \frac{ 2 }{ a } } }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabegibtloesung
{4}
{

Es sei
\mathl{{ \left( x_n \right) }_{n \in \N }}{} eine reelle \definitionsverweis {konvergente Folge}{}{} mit
\mavergleichskette
{\vergleichskette
{ x_n }
{ \neq }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für alle
\mavergleichskette
{\vergleichskette
{ n }
{ \in }{ \N }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{ \lim_{n \rightarrow \infty} x_n }
{ = }{ x }
{ \neq }{ 0 }
{ }{ }
{ }{ }
} {}{}{.} Zeige, dass
\mathl{{ \left( { \frac{ 1 }{ x_n } } \right) }_{ n \in \N }}{} ebenfalls konvergent mit
\mavergleichskettedisp
{\vergleichskette
{ \lim_{n \rightarrow \infty} { \frac{ 1 }{ x_n } } }
{ =} { { \frac{ 1 }{ x } } }
{ } { }
{ } { }
{ } { }
} {}{}{} ist.

}
{} {}




\inputaufgabegibtloesung
{2}
{

Hans will sich ein Frühstücksei kochen. Im Moment, als er das Ei in das kochende Wasser eintaucht, zeigt seine Uhr
\mathl{7:21}{} \zusatzklammer {die Uhr läuft genau und hat keine Sekundenangabe} {} {.} Als er das nächste Mal auf die Uhr schaut, zeigt sie
\mathl{7:26}{} an. Bestimme das Infimum, Minimum, Supremum, Maximum der Zeit, die das Ei zwischen den beiden Momenten im Wasser ist.

}
{} {}




\inputaufgabegibtloesung
{6}
{

Beweise den Zwischenwertsatz.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Es sei
\mathdisp {f(x) =ax^2 +bx +c, \, a \neq 0} { , }
ein reelles Polynom vom Grad $2$. Zeige, dass der Durchschnitt des Graphen der Funktion mit jeder Tangenten an den Graphen aus genau einem Punkt besteht.

}
{} {}




\inputaufgabegibtloesung
{4 (1+3)}
{

\aufzaehlungzwei {Definiere die Funktion \maabbeledisp {} { [-1,1] } { \R } { x } { f(x) } {,} deren Graph der obere Halbkreis mit Mittelpunkt
\mathl{(0,0)}{} und Radius $1$ ist. } {Bestimme das \definitionsverweis {Taylorpolynom}{}{} vom Grad $3$ zu $f$ im Entwicklungspunkt $0$. }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Berechne das bestimmte Integral
\mathdisp {\int_0^1 { \frac{ x }{ \sqrt[3]{5x+1} } } dx} { . }

}
{} {}




\inputaufgabe
{3}
{

Es sei ein lineares Gleichungssystem mit zwei Gleichungen in zwei Variablen über $\Q$ gegeben. Die Lösungsmengen der einzelnen Gleichungen seien Geraden. Skizziere die drei Möglichkeiten, wie die Lösungsmenge des Systems aussehen kann.

}
{} {}




\inputaufgabegibtloesung
{5 (2+3)}
{

Es sei $K$ ein \definitionsverweis {endlicher Körper}{}{} mit $q$ Elementen. \aufzaehlungzwei {Zeige, dass die Polynomfunktionen \maabbeledisp {\varphi_d} {K} {K } {x} { x^d } {,} mit
\mavergleichskette
{\vergleichskette
{0 }
{ \leq }{ d }
{ < }{q }
{ }{ }
{ }{ }
} {}{}{} \definitionsverweis {linear unabhängig}{}{} sind. } {Zeige, dass die Exponentialfunktionen \maabbeledisp {\psi_b} {K} {K } {x} { b^x } {,} mit
\mavergleichskette
{\vergleichskette
{0 }
{ \leq }{ b }
{ < }{q }
{ }{ }
{ }{ }
} {}{}{} linear unabhängig sind. }

}
{} {}




\inputaufgabegibtloesung
{2}
{

Was ist falsch an der folgenden Argumentation:

\anfuehrung{Aussage: Es sei $\lambda$ ein \definitionsverweis {Eigenwert}{}{} zur \definitionsverweis {oberen Dreiecksmatrix}{}{}
\mavergleichskettedisp
{\vergleichskette
{M }
{ =} {\begin{pmatrix} d_1 & \ast & \cdots & \cdots & \ast \\ 0 & d_2 & \ast & \cdots & \ast \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & d_{ n-1} & \ast \\ 0 & \cdots & \cdots & 0 & d_{ n } \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{.} Dann ist
\mavergleichskettedisp
{\vergleichskette
{ \lambda }
{ =} { d_n }
{ } { }
{ } { }
{ } { }
} {}{}{.}

Beweis: Es sei
\mavergleichskettedisp
{\vergleichskette
{x }
{ =} { \begin{pmatrix} x_1 \\\vdots\\ x_n \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{} ein Eigenvektor der Matrix zum Eigenwert $\lambda$. Dies bedeutet die Gleichheit
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} d_1 & \ast & \cdots & \cdots & \ast \\ 0 & d_2 & \ast & \cdots & \ast \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & d_{ n-1} & \ast \\ 0 & \cdots & \cdots & 0 & d_{ n } \end{pmatrix} \begin{pmatrix} x_1 \\\vdots\\ x_n \end{pmatrix} }
{ =} { \lambda \begin{pmatrix} x_1 \\\vdots\\ x_n \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{.} Diese Gleichheit bedeutet die entsprechende Gleichheit in jeder Zeile. Speziell ergibt sich für die letzte Zeile die Bedingung
\mavergleichskettedisp
{\vergleichskette
{d_nx_n }
{ =} { \lambda x_n }
{ } { }
{ } { }
{ } { }
} {}{}{.} Da $x$ als Eigenvektor von $0$ verschiedenen sein muss, kann man durch $x_n$ dividieren und erhält
\mavergleichskette
{\vergleichskette
{ d_n }
{ = }{ \lambda }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{}

}
{} {}




\inputaufgabegibtloesung
{4}
{

Bestimme das \definitionsverweis {charakteristische Polynom}{}{,} die \definitionsverweis {Eigenwerte}{}{} mit \definitionsverweis {Vielfachheiten}{}{} und die \definitionsverweis {Eigenräume}{}{} zur reellen \definitionsverweis {Matrix}{}{}
\mathdisp {\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\1 & 0 & 0 \end{pmatrix}} { . }

}
{} {}