Kurs:Mathematik für Anwender/Teil I/38/Klausur/latex

Aus Wikiversity

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{ . 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}


%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 1 }

\renewcommand{\avier}{ 3 }

\renewcommand{\afuenf}{ 1 }

\renewcommand{\asechs}{ 2 }

\renewcommand{\asieben}{ 4 }

\renewcommand{\aacht}{ 7 }

\renewcommand{\aneun}{ 2 }

\renewcommand{\azehn}{ 4 }

\renewcommand{\aelf}{ 1 }

\renewcommand{\azwoelf}{ 4 }

\renewcommand{\adreizehn}{ 4 }

\renewcommand{\avierzehn}{ 6 }

\renewcommand{\afuenfzehn}{ 4 }

\renewcommand{\asechzehn}{ 4 }

\renewcommand{\asiebzehn}{ 6 }

\renewcommand{\aachtzehn}{ 5 }

\renewcommand{\aneunzehn}{ 64 }

\renewcommand{\azwanzig}{ }

\renewcommand{\aeinundzwanzig}{ }

\renewcommand{\azweiundzwanzig}{ }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabelleachtzehn


\klausurnote

\newpage


\setcounter{section}{0}




\inputaufgabegibtloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Eine \stichwort {injektive} {} Abbildung \maabbdisp {f} {L} {M } {.}

}{Der \stichwort {Betrag} {} einer komplexen Zahl
\mathl{z=a+b { \mathrm i}}{.}

}{Die \stichwort {Stetigkeit} {} einer Funktion \maabbdisp {f} {\R} {\R } {} in einem Punkt
\mathl{x \in \R}{.}

}{Die \stichwort {Ableitungsfunktion} {} zu einer differenzierbaren Funktion \maabb {f} {\R} {\R } {.}

}{Die \stichwort {Matrizenmultiplikation} {.}

}{Eine \stichwort {invertierbare} {} $n \times n$-Matrix $M$ über einem Körper $K$. }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Die \stichwort {Division mit Rest} {} im Polynomring
\mathl{K[X]}{} über einem Körper $K$.}{Die Ableitung des Sinus und des Kosinus.}{Der Satz über die Beschreibung einer linearen Abbildung bei einem Basiswechsel.}

}
{} {}




\inputaufgabegibtloesung
{1}
{

In der Klasse ist es sehr laut. Frau Maier-Sengupta sagt \anfuehrung{Bitte nicht gleichzeitig sprechen}{.} Bringe diese Aussage mit dem Konzept von \definitionsverweis {disjunkten Mengen}{}{} in Verbindung.

}
{} {}




\inputaufgabegibtloesung
{3 (1+2)}
{

\aufzaehlungzwei {Finde eine ganzzahlige Lösung
\mavergleichskette
{\vergleichskette
{(x,y) }
{ \in }{ \Z \times \Z }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für die Gleichung
\mavergleichskettedisp
{\vergleichskette
{x^2-y^3+2 }
{ =} { 0 }
{ } { }
{ } { }
{ } { }
} {}{}{.} } {Zeige, dass
\mathdisp {\left( { \frac{ 383 }{ 1000 } } , \, { \frac{ 129 }{ 100 } } \right)} { }
eine Lösung für die Gleichung
\mavergleichskettedisp
{\vergleichskette
{x^2-y^3+2 }
{ =} { 0 }
{ } { }
{ } { }
{ } { }
} {}{}{} ist. }

}
{} {}




\inputaufgabegibtloesung
{1}
{

Berechne die Gaußklammer von
\mathl{ - { \frac{ 133 }{ 33 } } }{.}

}
{} {}




\inputaufgabegibtloesung
{2}
{

Bestimme für das Polynom
\mavergleichskettedisp
{\vergleichskette
{P }
{ =} {-6 X^{9}-5X^8 -4X^7+ { \frac{ 1 }{ 9 } } X^6 + X^2 +X }
{ } { }
{ } { }
{ } { }
} {}{}{} den Grad, den Leitkoeffizienten, den Leitterm und den Koeffizienten zu $X^6$.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Zeige, dass eine konvergente reelle Folge beschränkt ist.

}
{} {}




\inputaufgabegibtloesung
{7}
{

Beweise das Folgenkriterium für die Stetigkeit einer Funktion \maabb {f} {\R} {\R } {} in einem Punkt
\mavergleichskette
{\vergleichskette
{ x }
{ \in }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}
{} {}




\inputaufgabegibtloesung
{2}
{

Bestimme den \definitionsverweis {Grenzwert}{}{}
\mathdisp {\operatorname{lim}_{ x \rightarrow 0 } \, { \frac{ \ln (x+1) }{ \sin \left( 2 x \right) } }} { . }

}
{} {}




\inputaufgabegibtloesung
{4}
{

Zeige, dass die reelle Exponentialfunktion \maabbeledisp {} {\R} {\R } {x} {e^x } {,} keine rationale Funktion ist.

}
{} {}




\inputaufgabegibtloesung
{1}
{

Erstelle eine Kreisgleichung für den Kreis im $\R^2$ mit Mittelpunkt
\mathl{(-5,5)}{,} der durch den Punkt
\mathl{(-4,-1)}{} läuft.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Es sei
\mavergleichskettedisp
{\vergleichskette
{f(x) }
{ =} { -3x + x^3 }
{ } { }
{ } { }
{ } { }
} {}{}{.} Wegen
\mavergleichskettedisp
{\vergleichskette
{f'(x) }
{ =} {-3+3x^2 }
{ } { }
{ } { }
{ } { }
} {}{}{} ist diese Funktion auf dem offen Intervall
\mathl{]-1,1[}{} streng fallend und damit injektiv \zusatzklammer {mit dem Bildintervall
\mathl{]-2,2 [}{}} {} {.} Dabei ist
\mavergleichskette
{\vergleichskette
{f(0) }
{ = }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Es sei
\mavergleichskettedisp
{\vergleichskette
{g(y) }
{ =} {\sum_{k = 0}^\infty b_k y^k }
{ } { }
{ } { }
{ } { }
} {}{}{} die Umkehrfunktion, die wir als eine Potenzreihe ansetzen. Bestimme aus der Bedingung
\mavergleichskettedisp
{\vergleichskette
{(g(f(x)) }
{ =} {x }
{ } { }
{ } { }
{ } { }
} {}{}{} die Koeffizienten
\mathl{b_0,b_1,b_2,b_3,b_4}{.}

}
{} {}




\inputaufgabegibtloesung
{4}
{

Bestimme für die Funktion
\mathdisp {f(x)= 2^x + { \left( { \frac{ 1 }{ 3 } } \right) }^x} { }
die Extrema.

}
{} {}




\inputaufgabegibtloesung
{6}
{

Sei \maabbdisp {f} {[a,b]} {\R } {} \definitionsverweis {stetig}{}{} mit
\mathdisp {\int_{a}^{b} f(x)g(x)dx=0} { }
für jede stetige Funktion \maabb {g} {[a,b]} {\R_{\geq 0} } {.} Zeige $f=0$.

}
{} {}




\inputaufgabegibtloesung
{4 (2+2)}
{

Ein \definitionsverweis {lineares Ungleichungssystem}{}{} sei durch die Ungleichungen
\mavergleichskettedisp
{\vergleichskette
{x }
{ \geq} { 0 }
{ } { }
{ } { }
{ } { }
} {}{}{,}
\mavergleichskettedisp
{\vergleichskette
{y+x }
{ \geq} { 0 }
{ } { }
{ } { }
{ } { }
} {}{}{,}
\mavergleichskettedisp
{\vergleichskette
{-1-y }
{ \leq} {-x }
{ } { }
{ } { }
{ } { }
} {}{}{,}
\mavergleichskettedisp
{\vergleichskette
{5y -2x }
{ \leq} {3 }
{ } { }
{ } { }
{ } { }
} {}{}{,} gegeben.

a) Skizziere die Lösungsmenge dieses Ungleichungssystems.

b) Bestimme die Eckpunkte der Lösungsmenge.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Es sei $V$ der reelle Vektorraum der Polynome vom Grad $\leq 4$ mit der Basis
\mathbeddisp {x^i} {}
{0 \leq i \leq 4} {}
{} {} {} {.} Erstelle für die Ableitungsabbildung \maabbeledisp {\varphi} {V} {V } {P} {P' } {,} die beschreibende Matrix bezüglich dieser Basis.

Bestimme den Kern und das Bild dieser Abbildung sowie deren Dimensionen.

}
{} {}




\inputaufgabegibtloesung
{6}
{

Es seien
\mavergleichskette
{\vergleichskette
{M }
{ = }{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{A }
{ = }{ \begin{pmatrix} x & y \\ z & w \end{pmatrix} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \definitionsverweis {Matrizen}{}{} über einem \definitionsverweis {Körper}{}{} $K$ mit
\mavergleichskettedisp
{\vergleichskette
{A \circ M }
{ =} { \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{.} Zeige, dass dann auch
\mavergleichskettedisp
{\vergleichskette
{M \circ A }
{ =} { \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt.

}
{} {}




\inputaufgabegibtloesung
{5}
{

Beweise den Satz über die Eigenvektoren zu verschiedenen Eigenwerten.

}
{} {}