Kurs:Mathematik für Anwender/Teil I/47/Klausur/latex

Aus Wikiversity

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{ . 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}


%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 2 }

\renewcommand{\avier}{ 3 }

\renewcommand{\afuenf}{ 2 }

\renewcommand{\asechs}{ 2 }

\renewcommand{\asieben}{ 2 }

\renewcommand{\aacht}{ 1 }

\renewcommand{\aneun}{ 1 }

\renewcommand{\azehn}{ 6 }

\renewcommand{\aelf}{ 4 }

\renewcommand{\azwoelf}{ 4 }

\renewcommand{\adreizehn}{ 4 }

\renewcommand{\avierzehn}{ 2 }

\renewcommand{\afuenfzehn}{ 5 }

\renewcommand{\asechzehn}{ 5 }

\renewcommand{\asiebzehn}{ 2 }

\renewcommand{\aachtzehn}{ 1 }

\renewcommand{\aneunzehn}{ 2 }

\renewcommand{\azwanzig}{ 6 }

\renewcommand{\aeinundzwanzig}{ 4 }

\renewcommand{\azweiundzwanzig}{ 64 }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabelleeinundzwanzig


\klausurnote

\newpage


\setcounter{section}{0}




\inputaufgabegibtloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Der \stichwort {Körper der komplexen Zahlen} {} \zusatzklammer {mit den Verknüpfungen} {} {.}

}{Der \stichwort {Grad} {} eines Polynoms
\mathbed {P \in K[X]} {}
{P \neq 0} {}
{} {} {} {,} über einem Körper $K$.

}{Die \stichwort {bestimmte Divergenz} {} einer reellen Folge
\mathl{{ \left( x_n \right) }_{n \in \N }}{} gegen $- \infty$.

}{Die reelle \stichwort {Exponentialfunktion} {} zu einer Basis
\mavergleichskette
{\vergleichskette
{b }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}{Der \stichwort {Kosinus hyperbolicus} {.}

}{\stichwort {Ähnliche} {} Matrizen
\mathl{M,N \in \operatorname{Mat}_{ n } (K)}{.} }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Die \stichwort {allgemeine binomische Formel} {} für
\mathl{(a+b)^n}{.}}{Die \stichwort {Produktregel} {} für reelle Folgen.}{Der \stichwort {Basisaustauschsatz} {.}}

}
{} {}




\inputaufgabegibtloesung
{2}
{

Es seien
\mathl{p,q,r}{} Aussagen. Zeige, dass
\mathdisp {{ \left( (p \rightarrow q) \wedge (p \rightarrow r) \right) } \leftrightarrow { \left( p \rightarrow ( q \wedge r) \right) }} { }
eine Tautologie ist.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Ein Schokoriegel der Marke \anfuehrung{Höcker und Kerbe}{} besteht aus einer einzigen Reihe von $n$ hintereinanderliegenden höckerförmigen Schokostücken, die jeweils durch eine Einkerbung \zusatzklammer {der Sollbruchstelle} {} {} miteinander verbunden sind. Zeige mit und ohne Induktion, dass man, egal bei welcher Teilungsstrategie, genau $n-1$ Teilungsschritte braucht, um den Schokoriegel vollständig in seine Stücke aufzuteilen.

}
{} {}




\inputaufgabegibtloesung
{2 (1+1)}
{

Wir betrachten auf der Menge
\mavergleichskettedisp
{\vergleichskette
{M }
{ =} { \{a,b,c,d \} }
{ } { }
{ } { }
{ } { }
} {}{}{} die durch die Tabelle %Daten für folgende Tabelle


\renewcommand{\leitzeilenull}{ $\star$ }

\renewcommand{\leitzeileeins}{ $a$ }

\renewcommand{\leitzeilezwei}{ $b$ }

\renewcommand{\leitzeiledrei}{ $c$ }

\renewcommand{\leitzeilevier}{ $d$ }

\renewcommand{\leitzeilefuenf}{ }

\renewcommand{\leitzeilesechs}{ }

\renewcommand{\leitzeilesieben}{ }

\renewcommand{\leitzeileacht}{ }

\renewcommand{\leitzeileneun}{ }

\renewcommand{\leitzeilezehn}{ }

\renewcommand{\leitzeileelf}{ }

\renewcommand{\leitzeilezwoelf}{ }


\renewcommand{\leitspaltenull}{ }

\renewcommand{\leitspalteeins}{ $a$ }

\renewcommand{\leitspaltezwei}{ $b$ }

\renewcommand{\leitspaltedrei}{ $c$ }

\renewcommand{\leitspaltevier}{ $d$ }

\renewcommand{\leitspaltefuenf}{ }

\renewcommand{\leitspaltesechs}{ }

\renewcommand{\leitspaltesieben}{ }

\renewcommand{\leitspalteacht}{ }

\renewcommand{\leitspalteneun}{ }

\renewcommand{\leitspaltezehn}{ }

\renewcommand{\leitspalteelf}{ }

\renewcommand{\leitspaltezwoelf}{ }

\renewcommand{\leitspaltedreizehn}{ }

\renewcommand{\leitspaltevierzehn}{ }

\renewcommand{\leitspaltefuenfzehn}{ }

\renewcommand{\leitspaltesechzehn}{ }

\renewcommand{\leitspaltesiebzehn}{ }

\renewcommand{\leitspalteachtzehn}{ }

\renewcommand{\leitspalteneunzehn}{ }

\renewcommand{\leitspaltezwanzig}{ }



\renewcommand{\aeinsxeins}{ c }

\renewcommand{\aeinsxzwei}{ a }

\renewcommand{\aeinsxdrei}{ a }

\renewcommand{\aeinsxvier}{ a }

\renewcommand{\aeinsxfuenf}{ }

\renewcommand{\aeinsxsechs}{ }

\renewcommand{\aeinsxsieben}{ }

\renewcommand{\aeinsxacht}{ }

\renewcommand{\aeinsxneun}{ }

\renewcommand{\aeinsxzehn}{ }

\renewcommand{\aeinsxelf}{ }

\renewcommand{\aeinsxzwoelf}{ }



\renewcommand{\azweixeins}{ d }

\renewcommand{\azweixzwei}{ d }

\renewcommand{\azweixdrei}{ b }

\renewcommand{\azweixvier}{ b }

\renewcommand{\azweixfuenf}{ }

\renewcommand{\azweixsechs}{ }

\renewcommand{\azweixsieben}{ }

\renewcommand{\azweixacht}{ }

\renewcommand{\azweixneun}{ }

\renewcommand{\azweixzehn}{ }

\renewcommand{\azweixelf}{ }

\renewcommand{\azweixzwoelf}{ }



\renewcommand{\adreixeins}{ a }

\renewcommand{\adreixzwei}{ b }

\renewcommand{\adreixdrei}{ c }

\renewcommand{\adreixvier}{ c }

\renewcommand{\adreixfuenf}{ }

\renewcommand{\adreixsechs}{ }

\renewcommand{\adreixsieben}{ }

\renewcommand{\adreixacht}{ }

\renewcommand{\adreixneun}{ }

\renewcommand{\adreixzehn}{ }

\renewcommand{\adreixelf}{ }

\renewcommand{\adreixzwoelf}{ }



\renewcommand{\avierxeins}{ b }

\renewcommand{\avierxzwei}{ a }

\renewcommand{\avierxdrei}{ d }

\renewcommand{\avierxvier}{ d }

\renewcommand{\avierxfuenf}{ }

\renewcommand{\avierxsechs}{ }

\renewcommand{\avierxsieben}{ }

\renewcommand{\avierxacht}{ }

\renewcommand{\avierxneun}{ }

\renewcommand{\avierxzehn}{ }

\renewcommand{\avierxelf}{ }

\renewcommand{\avierxzwoelf}{ }


\renewcommand{\afuenfxeins}{ }

\renewcommand{\afuenfxzwei}{ }

\renewcommand{\afuenfxdrei}{ }

\renewcommand{\afuenfxvier}{ }

\renewcommand{\afuenfxfuenf}{ }

\renewcommand{\afuenfxsechs}{ }

\renewcommand{\afuenfxsieben}{ }

\renewcommand{\afuenfxacht}{ }

\renewcommand{\afuenfxneun}{ }

\renewcommand{\afuenfxzehn}{ }

\renewcommand{\afuenfxelf}{ }

\renewcommand{\afuenfxzwoelf}{ }


\renewcommand{\asechsxeins}{ }

\renewcommand{\asechsxzwei}{ }

\renewcommand{\asechsxdrei}{ }

\renewcommand{\asechsxvier}{ }

\renewcommand{\asechsxfuenf}{ }

\renewcommand{\asechsxsechs}{ }

\renewcommand{\asechsxsieben}{ }

\renewcommand{\asechsxacht}{ }

\renewcommand{\asechsxneun}{ }

\renewcommand{\asechsxzehn}{ }

\renewcommand{\asechsxelf}{ }

\renewcommand{\asechsxzwoelf}{ }


\renewcommand{\asiebenxeins}{ }

\renewcommand{\asiebenxzwei}{ }

\renewcommand{\asiebenxdrei}{ }

\renewcommand{\asiebenxvier}{ }

\renewcommand{\asiebenxfuenf}{ }

\renewcommand{\asiebenxsechs}{ }

\renewcommand{\asiebenxsieben}{ }

\renewcommand{\asiebenxacht}{ }

\renewcommand{\asiebenxneun}{ }

\renewcommand{\asiebenxzehn}{ }

\renewcommand{\asiebenxelf}{ }

\renewcommand{\asiebenxzwoelf}{ }


\renewcommand{\aachtxeins}{ }

\renewcommand{\aachtxzwei}{ }

\renewcommand{\aachtxdrei}{ }

\renewcommand{\aachtxvier}{ }

\renewcommand{\aachtxfuenf}{ }

\renewcommand{\aachtxsechs}{ }

\renewcommand{\aachtxsieben}{ }

\renewcommand{\aachtxacht}{ }

\renewcommand{\aachtxneun}{ }

\renewcommand{\aachtxzehn}{ }

\renewcommand{\aachtxelf}{ }

\renewcommand{\aachtxzwoelf}{ }


\renewcommand{\aneunxeins}{ }

\renewcommand{\aneunxzwei}{ }

\renewcommand{\aneunxdrei}{ }

\renewcommand{\aneunxvier}{ }

\renewcommand{\aneunxfuenf}{ }

\renewcommand{\aneunxsechs}{ }

\renewcommand{\aneunxsieben}{ }

\renewcommand{\aneunxacht}{ }

\renewcommand{\aneunxneun}{ }

\renewcommand{\aneunxzehn}{ }

\renewcommand{\aneunxelf}{ }

\renewcommand{\aneunxzwoelf}{ }


\renewcommand{\azehnxeins}{ }

\renewcommand{\azehnxzwei}{ }

\renewcommand{\azehnxdrei}{ }

\renewcommand{\azehnxvier}{ }

\renewcommand{\azehnxfuenf}{ }

\renewcommand{\azehnxsechs}{ }

\renewcommand{\azehnxsieben}{ }

\renewcommand{\azehnxacht}{ }

\renewcommand{\azehnxneun}{ }

\renewcommand{\azehnxzehn}{ }

\renewcommand{\azehnxelf}{ }

\renewcommand{\azehnxzwoelf}{ }



\renewcommand{\aelfxeins}{ }

\renewcommand{\aelfxzwei}{ }

\renewcommand{\aelfxdrei}{ }

\renewcommand{\aelfxvier}{ }

\renewcommand{\aelfxfuenf}{ }

\renewcommand{\aelfxsechs}{ }

\renewcommand{\aelfxsieben}{ }

\renewcommand{\aelfxacht}{ }

\renewcommand{\aelfxneun}{ }

\renewcommand{\aelfxzehn}{ }

\renewcommand{\aelfxelf}{ }

\renewcommand{\aelfxzwoelf}{ }



\renewcommand{\azwoelfxeins}{ }

\renewcommand{\azwoelfxzwei}{ }

\renewcommand{\azwoelfxdrei}{ }

\renewcommand{\azwoelfxvier}{ }

\renewcommand{\azwoelfxfuenf}{ }

\renewcommand{\azwoelfxsechs}{ }

\renewcommand{\azwoelfxsieben}{ }

\renewcommand{\azwoelfxacht}{ }

\renewcommand{\azwoelfxneun}{ }

\renewcommand{\azwoelfxzehn}{ }

\renewcommand{\azwoelfxelf}{ }

\renewcommand{\azwoelfxzwoelf}{ }



\renewcommand{\adreizehnxeins}{ }

\renewcommand{\adreizehnxzwei}{ }

\renewcommand{\adreizehnxdrei}{ }

\renewcommand{\adreizehnxvier}{ }

\renewcommand{\adreizehnxfuenf}{ }

\renewcommand{\adreizehnxsechs}{ }

\renewcommand{\adreizehnxsieben}{ }

\renewcommand{\adreizehnxacht}{ }

\renewcommand{\adreizehnxneun}{ }

\renewcommand{\adreizehnxzehn}{ }

\renewcommand{\adreizehnxelf}{ }

\renewcommand{\adreizehnxzwoelf}{ }



\renewcommand{\avierzehnxeins}{ }

\renewcommand{\avierzehnxzwei}{ }

\renewcommand{\avierzehnxdrei}{ }

\renewcommand{\avierzehnxvier}{ }

\renewcommand{\avierzehnxfuenf}{ }

\renewcommand{\avierzehnxsechs}{ }

\renewcommand{\avierzehnxsieben}{ }

\renewcommand{\avierzehnxacht}{ }

\renewcommand{\avierzehnxneun}{ }

\renewcommand{\avierzehnxzehn}{ }

\renewcommand{\avierzehnxelf}{ }

\renewcommand{\avierzehnxzwoelf}{ }


\renewcommand{\afuenfzehnxeins}{ }

\renewcommand{\afuenfzehnxzwei}{ }

\renewcommand{\afuenfzehnxdrei}{ }

\renewcommand{\afuenfzehnxvier}{ }

\renewcommand{\afuenfzehnxfuenf}{ }

\renewcommand{\afuenfzehnxsechs}{ }

\renewcommand{\afuenfzehnxsieben}{ }

\renewcommand{\afuenfzehnxacht}{ }

\renewcommand{\afuenfzehnxneun}{ }

\renewcommand{\afuenfzehnxzehn}{ }

\renewcommand{\afuenfzehnxelf}{ }

\renewcommand{\afuenfzehnxzwoelf}{ }


\renewcommand{\asechzehnxeins}{ }

\renewcommand{\asechzehnxzwei}{ }

\renewcommand{\asechzehnxdrei}{ }

\renewcommand{\asechzehnxvier}{ }

\renewcommand{\asechzehnxfuenf}{ }

\renewcommand{\asechzehnxsechs}{ }

\renewcommand{\asechzehnxsieben}{ }

\renewcommand{\asechzehnxacht}{ }

\renewcommand{\asechzehnxneun}{ }

\renewcommand{\asechzehnxzehn}{ }

\renewcommand{\asechzehnxelf}{ }

\renewcommand{\asechzehnxzwoelf}{ }



\renewcommand{\asiebzehnxeins}{ }

\renewcommand{\asiebzehnxzwei}{ }

\renewcommand{\asiebzehnxdrei}{ }

\renewcommand{\asiebzehnxvier}{ }

\renewcommand{\asiebzehnxfuenf}{ }

\renewcommand{\asiebzehnxsechs}{ }

\renewcommand{\asiebzehnxsieben}{ }

\renewcommand{\asiebzehnxacht}{ }

\renewcommand{\asiebzehnxneun}{ }

\renewcommand{\asiebzehnxzehn}{ }

\renewcommand{\asiebzehnxelf}{ }

\renewcommand{\asiebzehnxzwoelf}{ }





\renewcommand{\aachtzehnxeins}{ }

\renewcommand{\aachtzehnxzwei}{ }

\renewcommand{\aachtzehnxdrei}{ }

\renewcommand{\aachtzehnxvier}{ }

\renewcommand{\aachtzehnxfuenf}{ }

\renewcommand{\aachtzehnxsechs}{ }

\renewcommand{\aachtzehnxsieben}{ }

\renewcommand{\aachtzehnxacht}{ }

\renewcommand{\aachtzehnxneun}{ }

\renewcommand{\aachtzehnxzehn}{ }

\renewcommand{\aachtzehnxelf}{ }

\renewcommand{\aachtzehnxzwoelf}{ }


\tabelleleitvierxvier

gegebene Verknüpfung $\star$. \aufzaehlungzwei {Berechne
\mathdisp {b \star ( c \star (d \star a))} { . }
} {Besitzt die Verknüpfung $\star$ ein neutrales Element? }

}
{} {}




\inputaufgabegibtloesung
{2}
{

Erstelle das Pascalsche Dreieck bis
\mavergleichskette
{\vergleichskette
{n }
{ = }{6 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}
{} {}




\inputaufgabegibtloesung
{2}
{

Setze in das Polynom
\mathl{-5 X^3 - X^2 + \sqrt{2} X + \sqrt{5}}{} die Zahl $\sqrt{2}+\sqrt{3}$ ein.

}
{} {}




\inputaufgabegibtloesung
{1}
{

Bestimme, ob die reelle Zahl
\mathdisp {\sqrt{10000000000000000000000000000}} { }
rational ist oder nicht.

}
{} {}




\inputaufgabe
{1}
{

Erläutere die geometrische Relevanz des geometrischen Mittels.

}
{} {}




\inputaufgabegibtloesung
{6}
{

Es sei $K$ ein Körper und es seien $n$ verschiedene Elemente $a_1 , \ldots , a_n \in K$ und $n$ Elemente $b_1 , \ldots , b_n \in K$ gegeben. Zeige, dass es ein eindeutiges Polynom
\mathl{P \in K[X]}{} vom Grad $\leq n-1$ derart gibt, dass
\mavergleichskette
{\vergleichskette
{ P(a_i) }
{ = }{ b_i }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für alle $i$ ist.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Es seien \mathkor {} {{ \left( x_n \right) }_{n \in \N }} {und} {{ \left( y_n \right) }_{n \in \N }} {} \definitionsverweis {konvergente Folgen}{}{} in $\R$. Zeige, dass die Produktfolge
\mathl{{ \left( x_n \cdot y_n \right) }_{ n \in \N }}{} ebenfalls konvergent mit
\mavergleichskettedisp
{\vergleichskette
{ \lim_{n \rightarrow \infty} { \left( x_n \cdot y_n \right) } }
{ =} { { \left( \lim_{n \rightarrow \infty} x_n \right) } \cdot { \left( \lim_{n \rightarrow \infty} y_n \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{} ist.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Es sei
\mathl{\sum_{n = 0}^n a_n}{} eine \definitionsverweis {reelle Reihe}{}{} mit
\mavergleichskette
{\vergleichskette
{a_n }
{ \neq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für alle $n$. Die Folge der Quotienten
\mavergleichskettedisp
{\vergleichskette
{x_n }
{ =} { { \frac{ a_{n+1} }{ a_n } } }
{ } { }
{ } { }
{ } { }
} {}{}{} konvergiere gegen eine reelle Zahl $x$ mit
\mavergleichskette
{\vergleichskette
{-1 }
{ < }{ x }
{ < }{1 }
{ }{ }
{ }{ }
} {}{}{.} Zeige unter Verwendung des Quotientenkriteriums, dass die Reihe konvergiert.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Zeige, dass der Graph des \definitionsverweis {Kosinus hyperbolicus}{}{} nicht überall oberhalb der \definitionsverweis {Standardparabel}{}{} verläuft.

}
{} {}




\inputaufgabegibtloesung
{2}
{

Es sei \maabbdisp {f} { \R} {\R } {} eine \definitionsverweis {differenzierbare Funktion}{}{} ohne Nullstelle. Bestimme die Ableitung von
\mavergleichskette
{\vergleichskette
{ g(x) }
{ = }{ { \frac{ (f (x))^n }{ f(x^n) } } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für
\mavergleichskette
{\vergleichskette
{n }
{ \in }{ \N_+ }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}
{} {}




\inputaufgabegibtloesung
{5}
{

Zeige, dass die Funktion \maabbeledisp {f} {\R} {\R } {x} {f(x) = x^2 + \sin x } {,} genau zwei Nullstellen besitzt.

}
{} {}




\inputaufgabegibtloesung
{5}
{

Es seien $a,b,x,y$ positive reelle Zahlen und es gelte
\mavergleichskettedisp
{\vergleichskette
{a^x }
{ <} {b^y }
{ } { }
{ } { }
{ } { }
} {}{}{.} Zeige, dass es positive rationale Zahlen
\mathl{c,z}{} mit
\mavergleichskettedisp
{\vergleichskette
{a^x }
{ <} {c^z }
{ <} { b^y }
{ } { }
{ } { }
} {}{}{} gibt.

}
{} {}




\inputaufgabegibtloesung
{2}
{

Man gebe ein Beispiel einer beschränkten Funktion \maabbdisp {f} {[0,1]} {\R } {,} die nicht \definitionsverweis {Riemann-integrierbar}{}{} ist.

}
{} {}




\inputaufgabe
{1}
{

Addiere die beiden folgenden Vektoren graphisch.
















\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Linear unabhängige Vektoren im R^2.svg} }
\end{center}
\bildtext {} }

\bildlizenz { Linear unabhängige Vektoren im R^2.svg } {} {Claudia4} {Commons} {CC-by-sa 1.0} {}










$\,$

}
{} {}




\inputaufgabegibtloesung
{2}
{

Es seien \mathkor {} {V} {und} {W} {} \definitionsverweis {endlichdimensionale}{}{} $K$-\definitionsverweis {Vektorräume}{}{.} Es seien \mathkor {} {\mathfrak{ v } = v_1 , \ldots , v_n} {und} {\mathfrak{ u } =u_1 , \ldots , u_n} {} \definitionsverweis {Basen}{}{} von $V$ und \mathkor {} {\mathfrak{ w } = w_1 , \ldots , w_m} {und} {\mathfrak{ z } = z_1 , \ldots , z_m} {} Basen von $W$. Es seien \mathkor {} {M^{ \mathfrak{ v } }_{ \mathfrak{ u } }} {und} {M^{ \mathfrak{ w } }_{ \mathfrak{ z } }} {} die \definitionsverweis {Übergangsmatrizen}{}{.} Durch welche Übergangsmatrix wird der Basiswechsel von der Basis
\mathl{(v_1 ,0) , \ldots , (v_n,0),(0, w_1) , \ldots , (0, w_m)}{} zur Basis
\mathl{(u_1 ,0) , \ldots , (u_n,0),(0, z_1) , \ldots , (0, z_m)}{} vom \definitionsverweis {Produktraum}{}{}
\mathl{V \times W}{} beschrieben?

}
{} {}




\inputaufgabegibtloesung
{6}
{

Wir betrachten die letzte Ziffer im kleinen Einmaleins \zusatzklammer {ohne die Zehnerreihe} {} {} als eine Familie von $9$ Tupeln der Länge $9$, also die Zeilenvektoren in der Matrix
\mathdisp {\begin{pmatrix}

 1 &  2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 
2 & 4 & 6 & 8 & 0 & 2 & 4 & 6 & 8 \\
3 & 6 & 9 & 2 & 5 & 8 & 1 & 4 & 7 \\
4 & 8 & 2 & 6 & 0 & 4 & 8 & 2 & 6 \\
5 & 0 & 5 & 0 & 5 & 0 & 5 & 0 & 5 \\ 
6 & 2 & 8 & 4 & 0 & 6 & 2 & 8 & 4  \\ 
7 & 4 & 1 & 8 & 5 & 2 & 9 & 6 & 3 \\
8 & 6 & 4 & 2 & 0 & 8 & 6 & 4 & 2 \\
9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 &  1 

\end{pmatrix}} { . }
Welche \definitionsverweis {Dimension}{}{} besitzt der durch diese Tupel \definitionsverweis {aufgespannte Untervektorraum}{}{} des $\R^9$?

}
{} {}




\inputaufgabegibtloesung
{4}
{

Zeige, dass die Matrix
\mathdisp {\begin{pmatrix} 6 & 1 & 0 \\ 0 & 2 & 4 \\0 & 0 & 7 \end{pmatrix}} { }
über $\R$ \definitionsverweis {diagonalisierbar}{}{} ist und bestimme eine Basis aus Eigenvektoren.

}
{} {}