Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I/Arbeitsblatt 21/en/latex
\setcounter{section}{21}
\zwischenueberschrift{Warm-up-exercises}
\inputexercise
{}
{
Determine the derivatives of hyperbolic sine and hyperbolic cosine.
}
{} {}
\inputexercise
{}
{
Determine the derivative of the function \maabbeledisp {} {\R} {\R } {x} { x^2 \cdot \exp \left( x^3-4x \right) } {.}
}
{} {}
\inputexercise
{}
{
Determine the derivative of the function \maabbdisp {\ln} {\R_+} { \R } {.}
}
{} {}
\inputexercise
{}
{
Determine the derivatives of the sine and the cosine function by using Theorem 21.1.
}
{} {}
\inputexercise
{}
{
Determine the $1034871$-th derivative of the sine function.
}
{} {}
\inputexercise
{}
{
Determine the derivative of the function \maabbeledisp {} {\R} {\R } {x} { \sin \left( \cos x \right) } {.}
}
{} {}
\inputexercise
{}
{
Determine the derivative of the function \maabbeledisp {} {\R} {\R } {x} { ( \sin x )( \cos x ) } {.}
}
{} {}
\inputexercise
{}
{
Determine for $n \in \N$ the derivative of the function \maabbeledisp {} {\R} {\R } {x} { (\sin x )^n } {.}
}
{} {}
\inputexercise
{}
{
Determine the derivative of the function \maabbeledisp {} {D} {\R } {x} { \tan x = \frac{ \sin x }{ \cos x } } {.}
}
{} {}
\inputexercise
{}
{
Prove that the real sine function induces a bijective, strictly increasing function \maabbdisp {} {[- \pi/2, \pi/2]} {[-1,1] } {,} and that the real cosine function induces a bijective, strictly decreasing function \maabbdisp {} {[0,\pi]} {[-1,1] } {.}
}
{} {}
\inputexercise
{}
{
Determine the derivatives of arc-sine and arc-cosine functions.
}
{} {}
\inputexercise
{}
{
We consider the function \maabbeledisp {f} {\R_+} {\R } {x} {f(x) = 1 + \ln x - \frac{1}{x} } {.}
a) Prove that $f$ gives a continuous bijection between \mathkor {} {\R_+} {and} {\R} {.}
b) Determine the inverse image $u$ of $0$ under $f$, then compute $f'(u)$ and $(f^{-1})'(0)$. Draw a rough sketch for the inverse function $f^{-1}$.
}
{} {}
\inputexercise
{}
{
Let
\maabbdisp {f,g} {\R} {\R
} {}
be two differentiable functions. Let $a \in \R$. We have that
\mathdisp {f(a) \geq g(a) \text{ and } f'(x) \geq g'(x) \text{ for all } x \geq a} { . }
Prove that
\mathdisp {f(x) \geq g(x) \text{ for all } x \geq a} { . }
}
{} {}
\inputexercise
{}
{
We consider the function \maabbeledisp {f} {\R \setminus \{0\}} {\R } {x} {f(x) = e^{ - { \frac{ 1 }{ x } } } } {.}
a) Investigate the monotony behavior of this function.
b) Prove that this function is injective.
c) Determine the image of $f$.
d) Determine the inverse function on the image for this function.
e) Sketch the graph of the function $f$.
}
{} {}
\inputexercise
{}
{
Consider the function \maabbeledisp {f} {\R} {\R } {x} {f(x) = (2x+3)e^{-x^2} } {.} Determine the zeros and the local (global) extrema of $f$. Sketch up roughly the graph of the function.
}
{} {}
\inputexercise
{}
{
Discuss the behavior of the function graph of
\maabbeledisp {f} {\R} {\R
} {x} {f(x) = e^{-2x} -2e^{-x}
} {.}
Determine especially the monotony behavior, the extrema of $f$,
\mathl{\operatorname{lim}_{ x \rightarrow \infty } \, f(x)}{} and also for the derivative $f'$.
}
{} {}
\inputexercise
{}
{
Prove that the function
\mathdisp {f(x) = \begin{cases} x \sin \frac{1}{x} \text{ for } x \in {]0,1]}, \\ 0 \text{ for } x = 0,\end{cases}} { }
is continuous and that it has infinitely many zeros.
}
{} {}
\inputexercise
{}
{
Determine the limit of the sequence
\mathdisp {\frac{ \sin n }{n} , \, n \in \N_+} { . }
}
{} {}
\inputexercise
{}
{
Determine for the following functions if the function limit exists and, in case, what value it takes. \aufzaehlungvier{$\operatorname{lim}_{ x \rightarrow 0 } \, \frac{ \sin x }{x}$, }{$\operatorname{lim}_{ x \rightarrow 0 } \, \frac{ (\sin x)^2 }{x}$, }{$\operatorname{lim}_{ x \rightarrow 0 } \, \frac{ \sin x }{x^2}$, }{$\operatorname{lim}_{ x \rightarrow 1 } \, \frac{x-1}{ \ln x }$. }
}
{} {}
\inputexercise
{}
{
Determine for the following functions, if the limit function for
\mathbed {x \in \R \setminus \{0\}} {}
{x \rightarrow 0} {}
{} {} {} {,} exists, and, in case, what value it takes.
\aufzaehlungdrei{$\sin \frac{1}{x}$,
}{$x \cdot \sin \frac{1}{x}$,
}{$\frac{1}{x} \cdot \sin \frac{1}{x}$.
}
}
{} {}
\zwischenueberschrift{Hand-in-exercises}
\inputexercise
{3}
{
Determine the linear functions that are tangent to the exponential function.
}
{} {}
\inputexercise
{3}
{
Determine the derivative of the function \maabbeledisp {} {\R_+ } {\R } {x} { x^x } {.}
}
{} {}
The following task should be solved without reference to the second derivative.
\inputexercise
{4}
{
Determine the extrema of the function \maabbeledisp {f} {\R} {\R } {x} {f(x) = \sin x + \cos x } {.}
}
{} {}
\inputexercise
{6}
{
Let \maabbdisp {f} {\R} {\R } {} be a polynomial function of degree $d \geq 1$. Let $m$ be the number of local maxima of $f$ and $n$ the number of local minima of $f$. Prove that if $d$ is odd then $m=n$ and that if $d$ is even then $\betrag { m-n }=1$.
}
{} {}
<< | Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I | >> |
---|