Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I/Arbeitsblatt 25/en/latex

Aus Wikiversity
Zur Navigation springen Zur Suche springen

\setcounter{section}{25}






\zwischenueberschrift{Warm-up-exercises}




\inputexercise
{}
{

Compute the \definitionsverweis {definite integral}{}{}
\mathdisp {\int_{ 0 }^{ \sqrt{\pi} } x \sin x^2 \, d x} { . }

}
{} {}

In the following exercises, which involve the determination of antiderivative functions, consider an appropriate domain of definition.


\inputexercise
{}
{

Determine an \definitionsverweis {antiderivative}{}{} of the \definitionsverweis {function}{}{}
\mathdisp {\tan x} { . }

}
{} {}




\inputexercise
{}
{

Determine an \definitionsverweis {antiderivative}{}{} of the \definitionsverweis {function}{}{}
\mathdisp {x^n \cdot \ln x} { . }

}
{} {}




\inputexercise
{}
{

Determine an \definitionsverweis {antiderivative}{}{} of the \definitionsverweis {function}{}{}
\mathdisp {e^{\sqrt{x} }} { . }

}
{} {}




\inputexercise
{}
{

Determine an \definitionsverweis {antiderivative}{}{} of the \definitionsverweis {function}{}{}
\mathdisp {{ \frac{ x^3 }{ \sqrt[5]{ x^4+2} } }} { . }

}
{} {}




\inputexercise
{}
{

Determine an \definitionsverweis {antiderivative}{}{} of the \definitionsverweis {function}{}{}
\mathdisp {{ \frac{ \sin^{ 2 } x }{ \cos^{ 2 } x } }} { . }

}
{} {}




\inputexercise
{}
{

Determine for which
\mathl{a \in \R}{} the function
\mathdisp {a \longmapsto \int_{ -1 }^{ 2 } at^2-a^2t \, d t} { }
has a maximum or a minimum.

}
{} {}




\inputexercise
{}
{

According to recent studies the student's attention skills during the day are described by the following function \maabbeledisp {} {[8,18]} {\R } {x} {f(x) = -x^2+25x-100 } {.} Here $x$ is the time in hours and
\mathl{y=f(x)}{} is the attention measured in micro-credit points per second. When should one start a one and a half hour lecture, such that the total attention skills are optimal? How many micro-credit points will be added during this lecture?

}
{} {}




\inputexercise
{}
{

Let $I$ be a real interval and let \maabbdisp {f} {I} {\R } {} be a continuous function with antiderivative $F$. Let $G$ be an antiderivative of $F$ and let
\mathl{b,c \in \R}{.} Determine an antiderivative of the function
\mathdisp {(bt+c) \cdot f(t)} { . }

}
{} {}




\inputexercise
{}
{

Let
\mathl{n \in \N_+}{.} Determine an antiderivative of the function \maabbeledisp {} {\R_+} {\R_+ } {x} {x^{1/n} } {,} using the antiderivative of $x^n$ and Theorem 25.4.

}
{} {}




\inputexercise
{}
{

Determine an antiderivative of the natural logarithm function using the antiderivative of its inverse function.

}
{} {}




\inputexercise
{}
{

Let \maabbdisp {f} {[a,b]} {[c,d] } {} be a bijective, continuous differentiable function. Prove the formula for the antiderivative of the inverse function by the integral
\mathdisp {\int_a^b f^{-1}(y) dy} { }
using the substitution
\mathl{y=f(x)}{} and then integration by parts.

}
{} {}




\inputexercise
{}
{

Compute by an appropriate substitution an antiderivative of
\mathdisp {\sqrt{3x^2+5x-4}} { . }

}
{} {}




\inputexercise
{}
{

Compute the definite integral of the function \maabbeledisp {f} {\R} {\R } {x} {f(x) = 2x^3 +3e^x - \sin x } {,} on
\mathl{[-1,0]}{.}

}
{} {}




\inputexercise
{}
{

Compute the definite integral of the function \maabbeledisp {f} {\R_+} {\R } {x} {f(x) = \sqrt{x} - { \frac{ 1 }{ \sqrt{x} } } + { \frac{ 1 }{ 2x+3 } } -e^{-x} } {,} on
\mathl{[1,4]}{.}

}
{} {}






\zwischenueberschrift{Hand-in-exercises}




\inputexercise
{4}
{

Compute the definite integral
\mathl{\int_{ 0 }^{ 8 } f ( t) \, d t}{,} where the function $f$ is
\mathdisp {f(t)= \begin{cases} t+1 , \text{ if } 0 \leq t \leq 2 \, , \\ t^2-6t+11 , \text{ if } 2 < t \leq 5 \, , \\ 6 , \text{ if } 5 < t \leq 6 \, , \\ -2t+18 \, , \text{ if } 6 < t \leq 8 \, . \end{cases}} { }

}
{} {}




\inputexercise
{3}
{

Determine an \definitionsverweis {antiderivative}{}{} of the \definitionsverweis {function}{}{}
\mathdisp {x^3 \cdot \cos x -x^2 \cdot \sin x} { . }

}
{} {}




\inputexercise
{2}
{

Determine an \definitionsverweis {antiderivative}{}{} of the \definitionsverweis {function}{}{}
\mathdisp {\arcsin x} { . }

}
{} {}




\inputexercise
{4}
{

Determine an \definitionsverweis {antiderivative}{}{} of the \definitionsverweis {function}{}{}
\mathdisp {\sin ( \ln x)} { . }

}
{} {}




\inputexercise
{5}
{

Determine an \definitionsverweis {antiderivative}{}{} of the \definitionsverweis {function}{}{}
\mathdisp {e^x \cdot { \frac{ x^2+1 }{ (x+1)^2 } }} { . }

}
{} {}




\inputexercise
{5}
{

Let $I$ be a real interval and let \maabbdisp {f} {I} {\R } {} be a continuous function with antiderivative $F$. Let $G$ be an antiderivative of $F$ and $H$ an antiderivative of $G$. Let
\mathl{a,b,c \in \R}{.} Determine an antiderivative of the function
\mathdisp {(at^2+bt+c) \cdot f(t)} { . }

}
{} {}



<< | Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I | >>

PDF-Version dieses Arbeitsblattes (PDF englisch)

Zur Vorlesung (PDF)