Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I/Arbeitsblatt 27/en
- Warm-up-exercises
Exercise
Let
be an increasing function and . Show that the sequence , , converges to if and only if
holds, i.e. if the limit of the function for is .
Exercise
Let be an interval, a boundary point of and
a continuous function. Prove that the existence of the improper integral
does not depend on the choice of the starting point .
Exercise
Let be a bounded open interval and
a continuous function, which can be extended continuously to . Prove that the improper integral
exists.
Exercise
Formulate and prove computation rules for improper integrals (analogous to Lemma 23.5).
Exercise
Decide whether the improper integral
exists.
Exercise
Determine the improper integral
Exercise
Let be a bounded interval and let
converges to this improper integral.
- Hand-in-exercises
Exercise (2 points)
Compute the energy that would be necessary to move the Earth, starting from the current position relative to the Sun, infinitely far away from the Sun.
Exercise (3 points)
Decide whether the improper integral
exists and compute it in case of existence.
Exercise (5 points)
Give an example of a not bounded, continuous function
such that the improper integral exists.
Exercise (2 points)
Decide whether the improper integral
exists and compute it in case of existence.
Exercise (4 points)
Decide whether the improper integral
exists.
Exercise (8 points)
Decide whether the improper integral
exists.
(Do not try to find an antiderivative for the integrand.)
<< | Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I | >> |
---|