Lineare Differentialgleichungssysteme/Textabschnitt

Aus Wikiversity


Definition  

Es sei ein offenes reelles Intervall. Eine Differentialgleichung der Form

wobei

eine Matrix ist, deren Einträge allesamt Funktionen

sind, heißt homogene lineare gewöhnliche Differentialgleichung oder homogenes lineares gewöhnliches Differentialgleichungssystem.

Es handelt sich also um die Differentialgleichung zum Vektorfeld

Dieses Vektorfeld ist zu jedem fixierten Zeitpunkt eine lineare Abbildung

Ausgeschrieben liegt das Differentialgleichungssystem

vor. Es gibt immer die Nulllösung, also die konstante Abbildung mit dem Nullvektor als Wert, diese nennt man auch die triviale Lösung.

Für lineare Differentialgleichungssysteme gibt es wieder eine inhomogene Variante.


Definition  

Es sei ein offenes reelles Intervall. Eine Differentialgleichung der Form

wobei

eine Matrix ist, deren Einträge allesamt Funktionen

sind und wobei

eine Abbildung ist, heißt inhomogene lineare gewöhnliche Differentialgleichung oder inhomogenes lineares gewöhnliches Differentialgleichungssystem. Die Abbildung heißt dabei Störabbildung.

Insgesamt liegt das Differentialgleichungssystem

vor.

Die explizite Lösbarkeit eines solchen Systems hängt natürlich von der Kompliziertheit der beteiligten Funktionen und ab. In der folgenden Situation kann man das System auf einzelne eindimensionale lineare inhomogene Differentialgleichungen zurückführen und dadurch sukzessive lösen.


Lemma

Es sei ein offenes Intervall und es liege eine inhomogene lineare gewöhnliche Differentialgleichung der Form

mit stetigen Funktionen und und den Anfangsbedingungen

vor.

Dann lässt sich diese Gleichung lösen, indem man sukzessive unter Verwendung der zuvor gefundenen Lösungen die inhomogenen linearen gewöhnlichen Differentialgleichungen in einer Variablen, nämlich

löst.

Beweis

Das ist trivial.


Die Lösungen eines solchen linearen Differentialgleichungssystems in oberer Dreiecksgestalt stehen also in Bijektion zu den Lösungen der linearen inhomogenen Differentialgleichungen in einer Ortsvariablen, wobei die Störfunktionen jeweils mit den anderen Lösungen in der beschriebenen Weise zusammenhängen. Insbesondere übertragen sich Existenz- und Eindeutigkeitsaussagen.

Auch wenn man ein homogenes System lösen möchte, so muss man in den Einzelschritten inhomogene Differentialgleichungen lösen.