Lokaler Ring/Lokalisierung/Restekörper/Einführung/Textabschnitt

Aus Wikiversity
Zur Navigation springen Zur Suche springen


Definition  

Ein kommutativer Ring heißt lokal, wenn genau ein maximales Ideal besitzt.

Jeder Körper ist ein lokaler Ring mit dem Nullideal als eindeutigem maximalen Ideal. Ein kommutativer Ring ist genau dann lokal, wenn seine Nichteinheiten ein Ideal bilden, das dann das einzige maximale Ideal ist.


Definition  

Zu einem kommutativen lokalen Ring nennt man den Restklassenkörper zum einzigen maximalen Ideal von den Restekörper von .


Definition  

Sei ein kommutativer Ring und sei ein Primideal. Dann nennt man die Nenneraufnahme an die Lokalisierung von an . Man schreibt dafür . Es ist also

Für eine Primzahl besteht aus allen rationalen Zahlen, die man ohne im Nenner schreiben kann.

Der folgende Satz zeigt, dass diese Namensgebung Sinn ergibt.



Satz  

Sei ein kommutativer Ring und sei ein Primideal in .

Dann ist die Lokalisierung ein lokaler Ring mit maximalem Ideal

Beweis  

Die angegebene Menge ist in der Tat ein Ideal in der Lokalisierung

Wir zeigen, dass das Komplement von nur aus Einheiten besteht, so dass es sich um ein maximales Ideal handeln muss. Sei also , aber nicht in . Dann sind und somit gehört der inverse Bruch ebenfalls zur Lokalisierung.


Das Ideal ist dabei das Erweiterungsideal zu unter dem Ringhomomorphismus .



Satz  

Es sei ein Integritätsbereich mit Quotientenkörper .

Dann gilt

wobei der Durchschnitt über alle maximale Ideale läuft und in genommen wird.

Beweis  

Die Inklusion ist klar. Sei also und sei angenommen, gehöre zum Durchschnitt rechts. Für jedes maximale Ideal ist also , d.h. es gibt und mit . Wir betrachten das Ideal

Dieses Ideal ist in keinem maximalen Ideal enthalten, also muss es nach dem Lemma von Zorn das Einheitsideal sein. Es gibt also endlich viele maximale Ideale , und mit

wobei gesetzt wurde. Damit ist

Wir schreiben

Also gehört zu .




Lemma  

Es sei ein kommutativer Ring und sei ein Primideal.

Dann ist der Quotientenkörper des Restklassenringes in natürlicher Weise isomorph zum Restekörper der Lokalisierung .

Es ist also

Beweis  

Wir betrachten das kommutative Diagramm

von Ringhomomorphismen, wobei und zu konstruieren sind. Unter dem Ringhomomorphismus

wird das Primideal auf abgebildet, der Ringhomomorphismus ergibt sich als induzierter Homomorphismus. Unter werden Elemente , , die also durch repräsentiert werden, auf Einheiten abgebildet. Somit gibt es nach Fakt eine Fortsetzung auf den Quotientenkörper

Diese ist als Ringhomomorphismus zwischen Körpern injektiv. Ein Element des Restekörpers, das in der Lokalisierung durch mit repräsentiert wird, wird unter durch das Element getroffen (beachte ).


Der Restekörper zu einem Primideal wird mit bezeichnet. Wenn ein maximales Ideal ist, so ist insbesondere der Restklassenkörper gleich dem Restklassenkörper der Lokalisierung .