Natürliche Zahlen/Ordnung/Einführung/Textabschnitt

Aus Wikiversity
Zur Navigation springen Zur Suche springen


Definition  

Man sagt, dass eine natürliche Zahl größergleich einer natürlichen Zahl ist, geschrieben

wenn man von aus durch endlichfaches Nachfolgernehmen zu gelangt.

Auf dem nach rechts verlaufenden Zahlenstrahl bedeutet , dass sich weiter rechts als befindet. Diese Intepretation gilt für alle reellen Zahlen.

Statt schreibt man auch (gesprochen kleinergleich). Die Schreibweise bedeutet und .



Lemma  

Für natürliche Zahlen gilt

genau dann, wenn es ein mit

gibt.

Beweis  

Die Zahl gibt an, wie oft man von aus den Nachfolger nehmen muss, um zu zu gelangen.




Lemma  

Für die Größergleich-Relation in den natürlichen Zahlen gelten die folgenden Aussagen.

  1. Es ist

    für alle .

  2. Es ist

    oder

  3. Bei

    gilt

    oder

Beweis  

Wir verwenden die Charakterisierung aus Fakt.

  1. Ist klar wegen .
  2. Wir zeigen die Aussage oder für alle durch Induktion über . Für ist die Aussage klar. Sei also angenommen, dass die Aussage für ein bestimmtes gelte. Dann ist oder . Im ersten Fall ist dann und insbesondere . Im zweiten Fall ist mit einem und damit .
  3. Wird ähnlich wie (2) bewiesen, siehe Aufgabe.




Satz  

Auf den natürlichen Zahlen

ist durch die Größergleich-Relation eine totale Ordnung definiert.

Beweis  

Wir verwenden die Charakterisierung mit der Addition. Wegen ist . Wenn und ist, so bedeutet dies, dass es natürliche Zahlen mit und gibt. Dann gilt insgesamt

und somit ist auch . Aus und ergibt sich und und somit . Dies ist nach der Abziehregel nur bei möglich, und dies ist wiederum, da kein Nachfolger ist, nur bei möglich. Die Aussage oder beweisen wir durch Induktion über (für jedes feste ), wobei der Induktionsanfang wegen klar ist. Die Aussage gelte also für ein bestimmtes . Wenn die erste Möglichkeit gilt, also , so gilt wegen

erst recht . Wenn die zweite Möglichkeit gilt, also , so gibt es zwei Möglichkeiten. Bei ist und die Gesamtaussage gilt für . Andernfalls ist und somit ist nach Fakt  (3) und die Gesamtaussage gilt erneut.


Wir begründen nun, dass die Ordnungsrelation mit der Addition und der Multiplikation verträglich ist.



Satz  

Es seien natürliche Zahlen. Dann gelten folgende Aussagen.

  1. Es ist

    genau dann, wenn

    ist.

  2. Aus

    und

    folgt

  3. Aus

    folgt

  4. Aus

    und

    folgt

  5. Aus

    und

    folgt

Beweis  

  1. Wir beweisen die Aussage duch Induktion über . Bei ist die Aussage klar. Für den Induktionsschritt müssen wir lediglich zeigen, dass die Aussage für gilt. Bei ist die Aussage klar, da der Nachfolger wohldefiniert ist. Bei ist nach Fakt  (3) und somit

    Dies zeigt zugleich, dass aus auch folgt. Da die Ordnung total ist, folgt somit auch aus die Beziehung .

  2. Zweifache Anwendung von Teil (1) liefert

    so dass die Transitivität den Schluss ergibt.

  3. Wir führen Induktion nach , die Fälle sind klar. Sei die Aussage für bewiesen. Dann ist mit dem Distributivgesetz, der Induktionsvoraussetzung und Teil (2)
  4. Aus den Voraussetzungen und Teil (3) ergibt sich
  5. Sei und . Dann ist und somit ist nach Teil (3)

    also .