Schnitttheorie von Kurven/Satz von Bezout/Dimension von Stufe im homogenen Restklassenring/Fakt/Beweis

Aus Wikiversity
Zur Navigation springen Zur Suche springen
Beweis

Wir betrachten die exakte Sequenz

Dabei steht vorne die Abbildung , dann folgt die Abbildung und schließlich die Restklassenbildung. All diese Abbildungen sind -Modulhomomorphismen. Die Injektivität vorne ist klar, da ein Integritätsbereich ist. Die Exaktheit an den beiden hinteren Stellen ist klar, bleibt noch die Exaktheit an der zweiten Stelle zu zeigen. Dort ist klar, dass die Verknüpfung die Nullabbildung ist. Sei also in . Da faktoriell ist und da und teilerfremd sind folgt aber, dass ein Vielfaches von sein muss. Dann kann man durch teilen und erhält, dass ein Vielfaches von sein muss (mit dem gleichen Faktor). Also kommt von links.

Da und homogen mit fixierten Graden sind, kann man diese Sequenz einschränken auf homogene Stufen, und zwar ergibt sich dabei die exakte Sequenz

(dabei sind die Stufen für negativen Index gleich ). Die Exaktheit bleibt erhalten, da bei einem homogenen Homomorphismus die Stufen unabhängig voneinander sind. Alle beteiligten Stufen sind nun endlichdimensionale Vektorräume. Für sind alle Indizes nichtnegativ und daher gilt . Wegen der Additivität der Vektorraumdimension bei exakten Komplexen (siehe Aufgabe) ergibt sich

Zur bewiesenen Aussage