Differenzierbare Mannigfaltikeit/Funktorielle Eigenschaften des Tangentialraums/Textabschnitt
Es seien und differenzierbare Mannigfaltigkeiten und es sei
eine differenzierbare Abbildung. Es sei und und es seien
zwei differenzierbare Kurven mit einem offenen Intervall und . Es seien und im Punkt tangential äquivalent.
Dann sind auch die Verknüpfungen und tangential äquivalent in .
Beweis
Aufgrund dieses Lemmas ist der folgende Begriff wohldefiniert.
Es seien und differenzierbare Mannigfaltigkeiten und es sei
eine differenzierbare Abbildung. Es sei und . Dann nennt man die Abbildung
die zugehörige Tangentialabbildung im Punkt . Sie wird mit bezeichnet.
Es seien und differenzierbare Mannigfaltigkeiten und es sei
eine differenzierbare Abbildung. Es sei , und es sei
die zugehörige Tangentialabbildung. Dann gelten folgende Aussagen.
- Wenn und offene Teilmengen sind und die Tangentialräume mit den umgebenden euklidischen Räumen identifiziert werden, so ist die Tangentialabbildung gleich dem totalen Differential .
- Wenn
mit und und
mit und Karten sind, so ist das Diagramm
kommutativ, wobei die vertikalen Abbildungen durch die Isomorphismen bzw. gegeben sind.
- ist -linear.
- Wenn eine weitere
Mannigfaltigkeit,
und
eine weitere differenzierbare Abbildung mit ist, so gilt
- Wenn ein Diffeomorphismus ist, dann ist ein Isomorphismus.
- Für eine
differenzierbare Kurve
mit einem offenen Intervall , und gilt im Tangentialraum die Gleichheit
(1). Jeder Tangentialvektor wird repräsentiert durch einen affin-linearen Weg mit einem Vektor , sodass wir zwischen diesen Vektoren und den durch sie definierten Tangentialvektoren hin- und herwechseln können. Für den zusammengesetzten Weg gilt nach der Kettenregel
(2). Die Kettenregel angewendet auf (wobei man und durch kleinere offene Mengen ersetzen muss)
liefert
was gerade die Kommutativität des Diagramms ist.
(3). Die Aussage folgt aus (2) und der Linearität des
totalen Differentials.
(4). Durch Übergang zu Karten folgt dies aus (2) und der Kettenregel.
(5) folgt aus (4) angewendet auf die Umkehrabbildung .
(6). Das Element
ist als Tangentenvektor an einem Punkt
als der Weg zu interpretieren. Bei
ist dies der identische Weg. Daher ist
Es seien und differenzierbare Mannigfaltigkeiten und
eine differenzierbare Abbildung. Es sei und . Dann nennt man die zur Tangentialabbildung
die Kotangentialabbildung im Punkt . Sie wird mit bezeichnet.
Ausgeschrieben handelt es sich dabei um die Abbildung