Zum Inhalt springen

Euklidische Ringe/Diskrete Bewertungsringe/Zusammenhang/Aufgabe

Aus Wikiversity

Es sei ein Integritätsbereich. Betrachte die beiden folgenden Bedingungen:

  1. Es gibt ein Primelement mit der Eigenschaft, dass sich jedes Element , , eindeutig als darstellen lässt mit einer Einheit und .
  2. ist ein euklidischer Bereich mit einer surjektiven euklidischen Funktion , die zusätzlich die beiden folgenden Eigenschaften erfüllt.
    a) Es gilt für alle .
    b) Es gilt genau dann, wenn für alle .

Zeige, dass beide Bedingungen äquivalent sind. Können Sie Beispiele für solche Ringe angeben?