Körpererweiterung/Norm und Spur/Zahlentheoretisch orientiert/Textabschnitt
Ein Element einer Körpererweiterung
definiert durch Multiplikation eine -lineare Abbildung
Über diese Konstruktion werden Norm und Spur von erklärt.
Zu einer linearen Abbildung
eines endlichdimensionalen -Vektorraumes in sich wird die Determinante und die Spur wie folgt berechnet. Man wählt eine -Basis und repräsentiert die lineare Abbildung bezüglich dieser Basis durch eine quadratische -Matrix
mit und rechnet dann die Determinante aus. Es folgt aus dem Determinantenmultiplikationssatz, dass dies unabhängig von der Wahl der Basis ist. Die Spur ist durch
gegeben, und dies ist nach Aufgabe ebenfalls unabhängig von der Wahl der Basis.
Es sei eine endliche Körpererweiterung. Zu einem Element nennt man die Determinante der -linearen Abbildung
die Norm von . Sie wird mit bezeichnet.
Es sei eine endliche Körpererweiterung. Zu einem Element nennt man die Spur der -linearen Abbildung
die Spur von . Sie wird mit bezeichnet.
Sei eine endliche Körpererweiterung. Dann hat die Norm
folgende Eigenschaften:
- Es ist .
- Für ist , wobei den Grad der Körpererweiterung bezeichne.
- Es ist genau dann, wenn ist.
- Dies folgt aus dem Determinantenmultiplikationssatz und Fakt.
- Zu einer beliebigen Basis von wird die Multiplikation mit einen Element durch die Diagonalmatrix beschrieben, bei der jeder Diagonaleintrag ist. Die Determinante ist daher nach Fakt.
- Die eine Richtung ist klar, sei also . Dann ist eine Einheit in und daher ist die Multiplikation mit eine bijektive -lineare Abbildung , und deren Determinante ist nach Fakt.
Sei eine endliche Körpererweiterung vom Grad . Dann hat die Spur
folgende Eigenschaften:
- Die Spur ist -linear, also und für .
- Für ist .
Dies folgt aus den Definitionen.
Eine Körpererweiterung
heißt einfach, wenn sie von einem Element erzeugt wird. Das bedeutet, dass es außer keinen Körper zwischen und gibt, der enthält. Das Element nennt man dann auch ein primitives Element der Körpererweiterung. Ist endlich und einfach, so ist
wobei das Minimalpolynom von ist.
Sei eine einfache endliche Körpererweiterung vom Grad . Dann hat das Minimalpolynom von die Gestalt
Das Minimalpolynom und das charakteristische Polynom der durch definierten -linearen Multiplikationsabbildung
haben beide den Grad . Nach dem Satz von Cayley-Hamilton annulliert das charakteristische Polynom die lineare Abbildung und ist somit ein Vielfaches des Minimalpolynoms, sodass sie übereinstimmen. Es sei bezüglich einer Basis von diese lineare Abbildung durch die Matrix gegeben. Dann ist das charakteristische Polynom gleich
Zum Koeffizienten leisten (in der Leibniz-Formel zur Berechnung der Determinante) nur diejenigen Permutationen einen Beitrag, bei denen -mal die Variable vorkommt, und das ist nur bei der identischen Permutation (also der Diagonalen) der Fall. Multipliziert man die Diagonale distributiv aus, so ergibt sich , sodass also gilt. Setzt man in der obigen Gleichung , so ergibt sich, dass die Determinante der negierten Matrix ist, woraus folgt.
Es sei eine endliche Körpererweiterung. Sie heißt separabel, wenn für jedes Element das Minimalpolynom separabel ist, also in keinem Erweiterungskörper eine mehrfache Nullstelle besitzt.
In unserem Zusammenhang, wo wir uns für Körpererweiterungen von interessieren, also in Charakteristik sind, ist eine Körpererweiterung stets separabel (siehe Aufgabe), und wir haben den folgenden Satz vom primitiven Element zur Verfügung.
Sei eine endliche separable Körpererweiterung. Dann wird von einem Element erzeugt, d.h. es gibt ein mit
mit einem irreduziblen (Minimal-)Polynom .