Metrische Räume/Grenzwert von Abbildungen/Textabschnitt
Wir betrachten die beiden stetigen Funktionen
und
die beide nicht im Nullpunkt definiert sind. Offensichtlich kann man durch die Festlegung zu einer stetigen Funktion auf ganz fortsetzen. Bei hingegen ist das nicht möglich: wenn man sich auf der positiven Halbgeraden annähert, wachsen die Funktionswerte gegen , wenn man sich auf der negativen Halbgeraden annähert, so wachsen die Funktionswerte gegen , und somit ist jede Fortsetzung nicht stetig. Diese Beobachtung führt zum Begriff des Grenzwertes einer Abbildung, den wir insbesondere im Rahmen der Differentialrechnung verwenden werden.
Es sei ein metrischer Raum und eine Teilmenge. Ein Punkt heißt Berührpunkt von , wenn zu jedem der Durchschnitt
Es sei ein metrischer Raum und eine Teilmenge. Die Menge aller Berührpunkte von heißt der Abschluss von . Er wird mit bezeichnet.
Der Abschluss ist eine abgeschlossene Menge, und zwar die kleinste abgeschlossene Menge, die umfasst.
Es sei ein metrischer Raum, sei eine Teilmenge und sei ein Berührpunkt von . Es sei
eine Abbildung in einen weiteren metrischen Raum . Dann heißt der Grenzwert (oder Limes) von in , wenn es für jedes ein gibt mit der folgenden Eigenschaft: Für jedes ist . In diesem Fall schreibt man
Wenn der Grenzwert existiert, so ist er eindeutig bestimmt.
Es sei ein metrischer Raum, sei eine Teilmenge und sei ein Berührpunkt von . Es sei
eine Abbildung in einen weiteren metrischen Raum und sei . Dann sind folgende Aussagen äquivalent.
- Die Abbildung besitzt in den Grenzwert .
- Zu jeder offenen Menge mit gibt es eine offene Menge mit und mit .
- Für jede Folge in , die gegen konvergiert, konvergiert die Bildfolge gegen .
. Da offen ist gibt es ein mit . Aufgrund von (1) gibt es ein mit
und wir können
nehmen.
. Es sei eine gegen konvergente Folge
und ein
gegeben. Für die offene Menge
gibt es nach (2) eine offene Menge
mit
und
.
Wegen der Offenheit von gibt es auch ein
mit
.
Da die Folge gegen konvergiert, gibt es ein
mit
für alle
.
Für diese ist dann
,
d.h. die Bildfolge konvergiert gegen .
. Nehmen wir an, dass nicht der Grenzwert ist. Dann gibt es ein
derart, dass es für alle
ein
gibt mit
und mit
.
Wir wenden diese Eigenschaft auf die Stammbrüche
, ,
an und erhalten eine Folge
Es sei ein metrischer Raum, sei eine Teilmenge und sei ein Berührpunkt von . Es seien und Funktionen derart, dass die Grenzwerte und existieren.
Dann gelten folgende Beziehungen.
- Die Summe besitzt einen Grenzwert in , und zwar ist
- Das Produkt besitzt einen Grenzwert in , und zwar ist
- Es sei
für alle
und
.
Dann besitzt der Quotient einen Grenzwert in , und zwar ist
Beweis
Wir betrachten den Limes
wobei , ist. Für ist der Ausdruck nicht definiert, und aus dem Ausdruck ist nicht direkt ablesbar, ob der Grenzwert existiert und welchen Wert er annimmt. Man kann den Ausdruck aber mit erweitern, und erhält dann
Aufgrund der Rechenregeln für Grenzwerte können wir den Grenzwert von Zähler und Nenner ausrechnen, wobei wir im Nenner die Stetigkeit der Quadratwurzel gemäß Aufgabe verwenden, und es ergibt sich insgesamt .