Parameterabhängige Integrale/Stetigkeit und Differenzierbarkeit/Textabschnitt

Aus Wikiversity

Es sei ein Maßraum, ein metrischer Raum und

eine Funktion. Dann gibt es einerseits zu jedem

die Funktion

die man auf Stetigkeit untersuchen kann, und andererseits für jeden „Parameter“ die Funktion

und dazu (im Falle der Integrierbarkeit) das Integral . Wir interessieren uns für die Abhängigkeit von diesem Integral vom Parameter . Um deutlich zu machen, dass über

(nicht über ) integriert wird, schreiben wir manchmal oder , wobei die Variable zu bezeichnet.



Satz  

Es sei ein -endlicher Maßraum, ein metrischer Raum, und

eine Funktion,

die die folgenden Eigenschaften erfülle.
  1. Für alle ist die Funktion messbar.
  2. Für alle ist die Funktion stetig in .
  3. Es gibt eine nichtnegative messbare integrierbare Funktion

    mit

    für alle und alle .

Dann ist die Funktion

wohldefiniert und stetig in .

Beweis  

Die Integrierbarkeit der einzelnen Funktionen folgt aus Fakt. Wir müssen die Stetigkeit der Funktion in zeigen. Wir wenden das Folgenkriterium für die Stetigkeit an, sei also eine Folge in , die gegen konvergiert. Wir setzen . Aufgrund der zweiten Voraussetzung konvergiert die Folge für jedes gegen . Daher konvergiert die Funktionenfolge punktweise gegen . Wegen der dritten Bedingung kann man den Satz von der majorisierten Konvergenz anwenden und erhält



Satz  

Es sei ein -endlicher Maßraum, ein nichtleeres offenes Intervall und

eine Funktion,

die die folgenden Eigenschaften erfülle.
  1. Für alle ist die Funktion integrierbar.
  2. Für alle ist die Funktion (stetig) differenzierbar.
  3. Es gibt eine nichtnegative messbare integrierbare Funktion

    mit

    für alle und alle .

Dann ist die Funktion

(stetig) differenzierbar in , die Zuordnung ist integrierbar und es gilt die Formel

Beweis  

Der Differenzenquotient für in einem Punkt und ist

Wir müssen für jede Folge in mit , die gegen konvergiert, zeigen, dass die zugehörige Folge der Differenzenquotienten konvergiert. Nach dem Mittelwertsatz der Differentialrechnung gibt es (für jedes und jedes ) ein mit

Da integrierbar ist, ist auch für jedes der Differenzenquotient als Funktion in nach Fakt integrierbar. Dann ist unter Verwendung der Linearität des Integrals und des Satzes von der majorisierten Konvergenz

Die stetige Differenzierbarkeit folgt aus Fakt.



Korollar  

Es sei ein -endlicher Maßraum, offen und

eine Funktion,

die die folgenden Eigenschaften erfülle.
  1. Für jedes ist die Funktion

    integrierbar.

  2. Für jedes ist die Funktion

    stetig differenzierbar.

  3. Es gibt eine nichtnegative integrierbare Funktion

    mit

    für alle , alle und alle .

Dann ist die Funktion

stetig differenzierbar und es gilt für jedes die Formel

Beweis  

Dies folgt aus Fakt, indem man zu und die lineare Kurve

vorschaltet und betrachtet.