Zahlentheorie/Quadratischer Zahlbereich/Ganz, wenn Spur und Norm ganz ist/Fakt
Erscheinungsbild
Es sei eine quadratische Körpererweiterung und .
Dann ist genau dann ganz über , wenn sowohl die Norm als auch die Spur von zu gehören.
Es sei eine quadratische Körpererweiterung und .
Dann ist genau dann ganz über , wenn sowohl die Norm als auch die Spur von zu gehören.