Kurs:Analysis/Teil II/8/Klausur/kontrolle

Aus Wikiversity


Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13
Punkte 3 3 6 4 2 10 4 4 4 6 6 5 5 62



Aufgabe * (3 Punkte)Referenznummer erstellen


Aufgabe * (3 Punkte)Referenznummer erstellen


Aufgabe * (6 (3+1+2) Punkte)Referenznummer erstellen

Es sei eine nichtleere Menge, und das -fache Produkt der Menge mit sich selbst.

a) Zeige, dass auf durch

eine Metrik definiert wird.

b) Bestimme zu und den Abstand .

c) Liste für und alle Elemente aus der offenen Kugel auf.


Aufgabe * (4 Punkte)Referenznummer erstellen

Es seien und metrische Räume und es seien

zwei stetige Abbildungen. Zeige, dass die Menge

abgeschlossen in ist.


Aufgabe * (2 Punkte)Referenznummer erstellen

Beschreibe (ohne weitere Begründung) den Lauf des Sekundenzeigers einer Uhr als eine differenzierbare Kurve auf dem Einheitskreis (der Zeiger soll also im Zeitintervall eine Runde im Uhrzeigersinn drehen und zum Zeitpunkt „oben“ starten).


Aufgabe * (10 Punkte)Referenznummer erstellen

Beweise den Banachschen Fixpunktsatz.


Aufgabe * (4 Punkte)Referenznummer erstellen

Es sei

eine stetig differenzierbare Funktion mit für . Zeige (die anschaulich klare Aussage), dass die Bogenlänge des Graphen von über mit der Bogenlänge des Graphen der Umkehrfunktion über übereinstimmt.


Aufgabe * (4 Punkte)Referenznummer erstellen

Löse das lineare Anfangswertproblem


Aufgabe * (4 Punkte)Referenznummer erstellen

Bestimme das Taylor-Polynom zweiter Ordnung der Funktion

im Punkt .


Aufgabe * (6 Punkte)Referenznummer erstellen

Wir betrachten die Funktion

Für welche , , besitzt die zugehörige dreistufige (maximale) untere Treppenfunktion zu den maximalen Flächeninhalt? Welchen Wert besitzt er?


Aufgabe * (6 (2+2+2) Punkte)Referenznummer erstellen

Wir betrachten die Abbildung

a) Bestimme die regulären Punkte der Abbildung .

b) Zeige, dass in lokal eine differenzierbare Umkehrabbildung besitzt, und bestimme das totale Differential von im Punkt .

c) Man gebe alle Punkte an, in denen nicht lokal invertierbar ist.


Aufgabe * (5 Punkte)Referenznummer erstellen

Bestimme die ersten drei Iterationen in der Picard-Lindelöf-Iteration für die gewöhnliche Differentialgleichung

mit der Anfangsbedingung .


Aufgabe * (5 Punkte)Referenznummer erstellen

Es sei

ein Gradientenfeld und sei

( ein offenes Intervall) eine Lösung der zugehörigen Differentialgleichung . Es gelte für alle . Zeige, dass injektiv ist.