Kurs:Lineare Algebra/Teil I/57/Klausur mit Lösungen

Aus Wikiversity



Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Punkte 3 0 3 7 4 2 0 8 0 0 11 5 4 0 5 3 0 0 3 3 61




Aufgabe (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

  1. Die Hintereinanderschaltung der Abbildungen

    und

  2. /Definition/Begriff
  3. /Definition/Begriff
  4. /Definition/Begriff
  5. /Definition/Begriff
  6. /Definition/Begriff


Lösung

  1. Die Abbildung

    heißt die Hintereinanderschaltung der Abbildungen und .

  2. /Definition/Begriff/Inhalt
  3. /Definition/Begriff/Inhalt
  4. /Definition/Begriff/Inhalt
  5. /Definition/Begriff/Inhalt
  6. /Definition/Begriff/Inhalt


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (3 Punkte)

In Beweisen findet man häufig die Formulierung „Wir nehmen (jetzt, also) an“. Welche Bedeutungen im Beweis kann diese Formulierung haben?


Lösung Annahme/Funktion im Beweis/Aufgabe/Lösung


Aufgabe (7 (1+1+2+3) Punkte)

Der Planet Trigeno wird von einer einzigen Tierart bevölkert, den Trigos. Diese Tierart besitzt drei Geschlechter: Antilopen (A), Büffel (B) und Cnus (C). Bei der Paarung treffen zwei Individuen zusammen und erzeugen ein neues Individuum. Wenn das Paar gleichgeschlechtlich ist, so ist das Ergebnis wieder dieses Geschlecht, wenn das Paar gemischtgeschlechtlich ist, so ist das Ergebnis das dritte unbeteiligte Geschlecht. Alle Tiere gehören einer eindeutigen Generation an.

  1. Die -te Generation bestehe nur aus einem einzigen Geschlecht. Zeige, dass jede weitere Generation auch nur aus diesem Geschlecht besteht.
  2. Die -te Generation bestehe nur aus zwei Individuen unterschiedlichen Geschlechts. Zeige, dass diese Geschlechter mit ihrer Generation aussterben.
  3. Es gelte nun die zusätzliche Bedingung, dass jedes Paar nur einen Nachkommen erzeugen darf. Zeige, dass die Tierart genau dann aussterben muss, wenn es in einer Generation nur zwei oder weniger Individuen gibt.
  4. Es gelte nun die zusätzliche Bedingung, dass jedes Paar nur einen Nachkommen erzeugen darf, und in jeder Generation gebe es genau drei Individuen. Beschreibe die möglichen Generationsabfolgen. Welche Periodenlängen treten auf?


Lösung

  1. Wenn die Generation nur aus dem Geschlecht besteht, so sind nur Paarungen innerhalb dieses Geschlechts möglich und das Ergebnis gehört stets diesem Geschlecht an. Mit Induktion folgt, dass dies über alle folgenden Generationen so bleibt.
  2. Die Generation bestehe aus einem Individuum des Geschlechts und aus einem Individuum des Geschlechts . Die Folgegeneration besteht dann ausschließlich aus dem dritten Geschlecht und nach Teil (1) überträgt sich das auf alle folgenden Generationen.
  3. Wenn es nur ein oder kein Individuum gibt, so ist keine Paarung möglich und die nächste Generation ist leer. Wenn es zwei Individuen gibt, so ist nur eine Paarung möglich und es gibt nur einen Nachkommen, der sich allein nicht fortpflanzen kann. Wenn es dagegen mindestens drei Individuen, egal welchen Geschlechts, gibt, so sind auch mindestens drei Paarungen möglich und die nächste Generation besitzt mindestens wieder drei Individuen.
  4. Wenn drei gleichgeschlechtliche Individuen in einer Generation leben, so erzeugen die drei möglichen Paare stets wieder ebendieses Geschlecht. Die Möglichkeiten sind oder oder und die Periodenlänge ist . Wenn drei unterschiedliche Geschlechter vertreten sind, so ist jedes Geschlecht durch genau ein Individuum vertreten, es liegt also vor. Die drei Paarungen führen dann wieder zu und die Periodenlänge ist ebenfalls . Wenn ein Geschlecht durch zwei Individuen vertreten ist und ein zweites Geschlecht durch ein Individuum, sagen wir , so wird daraus und daraus und daraus . Die Periodenlänge ist also . Von diesem Typ gibt es zwei Generationsabfolgen, nämlich die mit (mit und ) und die mit (mit und ).


Aufgabe (4 Punkte)

Löse das inhomogene Gleichungssystem


Lösung

Wir eliminieren zuerst die Variable , indem wir die erste Gleichung von der vierten Gleichung abziehen. Dies führt auf

Nun eliminieren wir die Variable , indem wir (bezogen auf das vorhergehende System) und ausrechnen. Dies führt, nachdem wir die neue erste Gleichung durch sieben teilen, auf

Mit ergibt sich

und

Rückwärts gelesen ergibt sich

und


Aufgabe (2 Punkte)

Berechne über den komplexen Zahlen das Matrizenprodukt


Lösung

Man multipliziert die erste Zeile mit der Spalte rechts und erhält

Die zweite Zeile multipliziert mit der Spalte rechts ergibt

Das Ergebnis ist also der Spaltenvektor


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (8 Punkte)

Beweise die Dimensionsformel für eine lineare Abbildung


Lösung

Es sei . Es sei der Kern der Abbildung und seine Dimension ().

Es sei
eine

Basis von . Aufgrund des Basisergänzungssatzes gibt es Vektoren

derart, dass

eine Basis von ist. Wir behaupten, dass

eine Basis des Bildes ist. Es sei ein Element des Bildes . Dann gibt es ein mit . Dieses lässt sich mit der Basis als

schreiben. Dann ist

so dass sich als Linearkombination der schreiben lässt. Zum Beweis der linearen Unabhängigkeit der , , sei eine Darstellung der Null gegeben,

Dann ist

Also gehört zum Kern der Abbildung und daher kann man

schreiben. Da insgesamt eine Basis von vorliegt, folgt, dass alle Koeffizienten sein müssen, also sind insbesondere .


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (11 (6+5) Punkte)

Es sei ein Körper, und seien endlichdimensionale -Vektorräume und sei

eine lineare Abbildung.

a) Zeige: ist genau dann surjektiv, wenn es eine lineare Abbildung

mit

gibt.

b) Es sei nun surjektiv, es sei

und es sei fixiert. Definiere eine Bijektion zwischen und , unter der auf abgebildet wird.


Lösung

a) Es gebe eine lineare Abbildung mit der angegebenen Eigenschaft . Dann ist für jedes

also ist ein Urbild für unter .

Es sei eine Basis von und es seien Urbilder unter , also Elemente in mit

Wir definieren nun eine lineare Abbildung durch

Da man eine lineare Abbildung auf einer Basis frei vorgeben kann, ist dadurch in der Tat eine lineare Abbildung definiert.

Für die Verknüpfung und einen beliebigen Vektor gilt

Also ist diese Verknüpfung die Identität.

b) Wir definieren eine Abbildung durch

wobei die Addition von linearen Abbildungen von nach ist. Unter dieser Abbildung geht die Nullabbildung auf . Wir müssen zuerst zeigen, dass zu gehört. Dies folgt aus

für alle .

Zur Injektivität. Seien und aus gegeben, die auf das gleiche Element in abgebildet werden. Dann ist

und daher

Zur Surjektivität. Es sei . Wir betrachten und behaupten, dass dies zu gehört. Dies folgt aus

Damit ist im Bild der Abbildung.


Aufgabe (5 Punkte)

Berechne


Lösung

Um die Brüche wegzukriegen, multiplizieren wir den Term mit und erhalten

Es ist

und

Deren Produkt ist

und die Koeffizienten sind

und

Der lineare Term hebt sich weg und somit ist der Gesamtausdruck gleich .


Aufgabe (4 Punkte)

Bestimme das Polynom kleinsten Grades, das an der Stelle den Wert und an der Stelle den Wert besitzt.


Lösung

Der Ansatz

führt auf die beiden Gleichungen

und

besitzt. Somit ist

und daher

und

Das gesuchte Polynom ist also


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (5 Punkte)

Es sei eine nilpotente - Jordanmatrix. Zeige, dass die Kerne eine Fahne in bilden.


Lösung

Die nilpotente -Jordanmatrix hat die Gestalt

Die zugehörige lineare Abbildung ist also durch

gegeben. Die -te Iteration davon bildet somit auf

ab. Daher gehören die zum Kern von . Die Basisvektoren werden hingegen unter auf die linear unabhängigen Vektoren abgebildet. Daher ist der Rang gleich und es ist

mit der Dimension . Die Kerne bilden also eine aufsteigende Kette von Untervektorräumen, wobei die Dimensionen um wachsen. Es liegt also eine Fahne vor.


Aufgabe (3 Punkte)

Eine lineare Abbildung

werde bezüglich der Standardbasis durch die Matrix

beschrieben. Finde eine Basis, bezüglich der durch die Matrix

beschrieben wird.


Lösung

Es ist

und

Der Vektor gehört nicht zum Kern von , daher kann man aus den sukzessiven Bildern davon eine Basis wie gewünscht herstellen. Es ist

und

Daher ist

eine Basis, bezüglich der die jordansche Normalform

vorliegt.


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (0 Punkte)


Lösung /Aufgabe/Lösung


Aufgabe (3 Punkte)

Beschreibe die affine Gerade

als Urbild über einer affinen Abbildung .


Lösung

Der Richtungsvektor gehört jeweils zum Kern der beiden linear unabhängigen Linearformen und . Daher machen wir den Ansatz

Für den Aufpunkt ergibt sich die Bedingung

also ist und . Somit ist

eine affine Abbildung mit Urbild über 1 wie gewünscht.


Aufgabe (3 Punkte)

Bestimme zur reellen Matrix

die jordansche Normalform. (Es muss keine Basis angegeben werden, bezüglich der jordansche Normalform vorliegt.)


Lösung

Es ist

Das Element gehört zum Kern. Die -Untermatrix rechts oben hat eine Determinante und somit hat die Matrix den Rang und der Kern ist eindimensional. In diesem Fall wachsen die Kerne zu jeweils um eine Dimension und daher ist

die jordansche Normalform von .