Abbildung/Faktorisierung/Aufgabe/Lösung

Aus Wikiversity
Zur Navigation springen Zur Suche springen

a) Es sei das Bild von unter der Abbildung . Wegen

ist eine Teilmenge von . Die Abbildung, die ein Element auf sich selbst aber als Element in auffasst, nennen wir . Diese Abbildung ist injektiv. Die Abbildung

ist wohldefiniert, da zu gehört, und surjektiv, da genau aus den Elementen besteht, die im Bild liegen. Dabei ist offenbar

b) Es sei

Wir betrachten die Abbildung

Diese ist injektiv, da aus

folgt, dass

ist. Die Abbildung sei durch

gegeben. Diese ist surjektiv unter der Bedingung, dass nicht leer ist. Insgesamt ist

und somit

Falls leer ist, so ist die sogenannte leere Abbildung und man kann , und

nehmen.
Zur gelösten Aufgabe