Zum Inhalt springen

Abbildung/Quantoreneigenschaften/Lösungsinterpretation/Bemerkung

Aus Wikiversity

Die Frage, ob eine Abbildung die Eigenschaften injektiv oder surjektiv besitzt, kann man anhand der Gleichung

(in den beiden Variablen und ) erläutern. Die Surjektivität bedeutet, dass es zu jedem mindestens eine Lösung

für diese Gleichung gibt, die Injektivität bedeutet, dass es zu jedem maximal eine Lösung für diese Gleichung gibt, und die Bijektivität bedeutet, dass es zu jedem genau eine Lösung für diese Gleichung gibt. Die Surjektivität entspricht also der Existenz von Lösungen, die Injektivität der Eindeutigkeit von Lösungen. Beide Fragestellungen durchziehen die Mathematik und können selbst wiederum häufig als die Surjektivität oder die Injektivität einer geeigneten Abbildung interpretiert werden.