Algebra/Hyperfläche/Noethersche Normalisierung/Isomorphismus/Fakt/Beweis2

Aus Wikiversity
Zur Navigation springen Zur Suche springen
Beweis

Wir nehmen zusätzlich an, dass der Körper unendlich viele Elemente besitzt. Wir betrachten lineare Automorphismen der Form für und . Es sei

die Zerlegung in die homogenen Komponenten. Wir setzen . in ein, wobei aus einem Monom vom maximalen Grad der Ausdruck

wird. Wenn man dies ausmultipliziert, so erhält man einen Ausdruck plus eine Summe von Monomen mit Koeffizienten, in denen neben zumindest noch eine weitere Variable vorkommt. Die Summe über alle Ausdrücke der Form zu vom Grad stimmt dabei mit

überein. Wegen und da der Körper unendlich ist, gibt es Tupel derart, dass dies nicht ist.