Algebraisch Abgeschlossener Körper/Hyperfläche/Geradenschnitt/Aufgabe
Erscheinungsbild
Es sei ein algebraisch abgeschlossener Körper und die algebraische Hyperfläche zu einem nichtkonstanten Polynom . Sei ein Punkt. Zeige, dass es Geraden durch den Punkt gibt, deren Durchschnitt mit endlich ist. Zeige, dass der Durchschnitt von mit jeder Ebene durch den Punkt nicht endlich ist (und dass kein isolierter Punkt des Durchschnitts ist).