Zum Inhalt springen

Analysis 1/Gemischte Satzabfrage/5/Aufgabe/Lösung

Aus Wikiversity


  1. Es seien und reelle Folgen. Es gelte

    und und

    konvergieren beide gegen den gleichen Grenzwert . Dann konvergiert auch gegen diesen Grenzwert .
  2. Für komplexe Zahlen gilt
  3. Es sei eine offene Menge, ein Punkt und

    Funktionen, die beide in differenzierbar seien und wobei keine Nullstelle in besitze. Dann ist differenzierbar in mit