Zum Inhalt springen

Angeordneter Körper/Folge/Pseudokonvergenz/Aufgabe

Aus Wikiversity

Betrachte die folgenden (Pseudo)-Definitionen.


Es sei eine Folge in einem angeordneten Körper und es sei .

  1. Man sagt, dass die Folge gegen hypervergiert, wenn folgende Eigenschaft erfüllt ist. Zu jedem , , und alle gilt die Beziehung
  2. Man sagt, dass die Folge gegen supervergiert, wenn folgende Eigenschaft erfüllt ist. Zu jedem , , gibt es ein derart, dass für alle die Beziehung

    gilt.

  3. Man sagt, dass die Folge gegen megavergiert, wenn folgende Eigenschaft erfüllt ist. Es gibt ein derart, dass für alle und jedes , , die Beziehung

    gilt.

  4. Man sagt, dass die Folge gegen pseudovergiert, wenn folgende Eigenschaft erfüllt ist. Zu jedem , , gibt es ein derart, dass die Beziehung

    gilt.

  5. Man sagt, dass die Folge gegen semivergiert, wenn folgende Eigenschaft erfüllt ist. Zu jedem , , und jedem gibt es ein , , derart, dass die Beziehung

    gilt.

  6. Man sagt, dass die Folge gegen protovergiert, wenn folgende Eigenschaft erfüllt ist. Es gibt ein , , derart, dass für alle die Beziehung

    gilt.

  7. Man sagt, dass die Folge gegen quasivergiert, wenn folgende Eigenschaft erfüllt ist. Es gibt ein , , und ein derart, dass für alle die Beziehung

    gilt.

  8. Man sagt, dass die Folge gegen deuterovergiert, wenn folgende Eigenschaft erfüllt ist. Zu jedem , , gibt es ein derart, dass für alle die Beziehung

    gilt.


Vergleiche diese Definitionen mit der Definition von Konvergenz. Worin besteht der Unterschied? Welche Bedeutung haben die einzelnen Definitionen? Welche Definitionen sind zueinander äquivalent, zwischen welchen besteht eine Implikation (Beweis oder Gegenbeispiel)? Für welche Definitionen ist das eindeutig bestimmt?