Benutzer:Mogoh/sandbox5
Ana1
[Bearbeiten]Aufgabe 28
[Bearbeiten]a)
[Bearbeiten]\sum_{n,k \in \mathbb N \times \mathbb N}2^{-n+1} 3^{-2k-1}
= \sum_{k = 1}^\infty \sum_{n= 1}^\infty 2^{-n+1} 3^{-2k-1}
= \sum_{k = 1}^\infty 3^{-2k-1} \sum_{n= 1}^\infty 2^{-n+1}
= \frac{1}{3} \cdot 2 \sum_{k=1}^\infty \left( \frac{1}{9}^k \right) \sum_{n=1}^\infty \left( \frac{1}{2}^n \right)
= \frac{2}{3} \cdot \left( \frac{1}{1-\frac{1}{9}} - 1 \right) \left( \frac{1}{1-\frac{1}{2}} - 1 \right)
= \frac{3}{16}
b)
[Bearbeiten]\sum_{n,k \in \mathbb N \times \mathbb N} \frac{1}{(k^2+n^2)^s}
= \sum_{j=2}^\infty \sum_{k+n = j} \frac{1}{(k^2+n^2)^s}
Falls j = k+n , dann gilt \frac{1}{2} j^2 \le k^2 + n^2 \le j^2
\le \sum_{j=2}^\infty \frac{j-1}{\left( \frac{1}{2}j^2 \right)^s}
\le \sum_{j=2}^\infty s^s \frac{j}{j^{2s}}
= \sum_{j=2}^\infty 2^s \frac{1}{j^{2s-1}} < \infty
\ge \sum _{j=2}^\infty \frac{j-1}{j^{2s}}
\ge \sum _{j=2}^\infty \frac{1}{2} \frac{j}{j^{2s}}
> \infty
c)
[Bearbeiten]\sum_{n,k \in \mathbb N \times \mathbb N} {n \choose k} a^n b^k :
\sum_{k = 1}^\infty \sum_{n= 1}^\infty \left| {n \choose k} a^n b^k \right|
Es gilt : {n \choose k } = 0 , falls k > n
= \sum_{k = 1}^\infty \sum_{n= 1}^n {n \choose k} \vert a \vert^n \vert b \vert^k
= \sum_{k = 1}^\infty \vert a \vert^n \left( \sum_{n= 1}^n {n \choose k} \vert b \vert^k 1^{n-k} - 1 \right)
= \sum_{k = 1}^\infty \vert a \vert^n \left[ (1+ \vert b \vert^n -1 \left]
hier fehlt etwas ....