Berechenbarkeit/Beta-Funktion/Folgenrepräsentierung/Fakt/Beweis

Aus Wikiversity
Zur Navigation springen Zur Suche springen
Beweis

Es sei die endliche Folge vorgegeben. Wir wählen eine Primzahl , die größer als alle und größer als ist. Es sei

Die vorgegebene Folge ist also die Folge der Ziffern der ungeraden Stellen in der -adischen Ziffernentwicklung von . Wir behaupten für . Zunächst erfüllt die in der Definition der -Funktion formulierten Eigenschaften, und zwar mit

Die erste Eigenschaft ergibt sich aus

die anderen sind klar. Wenn umgekehrt ein die Bedingungen erfüllt (mit ), wobei ist, so ist

Da die -adische Entwicklung von eindeutig ist, folgen daraus und aus den weiteren Bedingungen die Gleichheiten und .

Zur bewiesenen Aussage